Update app.py
Browse files
app.py
CHANGED
@@ -1,100 +1,119 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
-
import
|
3 |
-
from byaldi import RAGMultiModalModel
|
4 |
-
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
5 |
from PIL import Image
|
6 |
-
|
7 |
import torch
|
|
|
|
|
|
|
8 |
import re
|
9 |
|
10 |
@st.cache_resource
|
11 |
-
def
|
12 |
-
|
13 |
-
model =
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
|
19 |
-
return
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
{
|
57 |
-
"role": "user",
|
58 |
-
"content": [
|
59 |
-
{"type": "image"},
|
60 |
-
{"type": "text", "text": "Run OCR on the image"}
|
61 |
-
]
|
62 |
-
}
|
63 |
-
]
|
64 |
-
|
65 |
-
text_prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
66 |
-
|
67 |
-
inputs = processor(
|
68 |
-
text=[text_prompt],
|
69 |
-
images=[image],
|
70 |
-
padding=True,
|
71 |
-
return_tensors="pt"
|
72 |
-
)
|
73 |
-
|
74 |
-
inputs = inputs.to(model.device)
|
75 |
-
|
76 |
-
with torch.no_grad():
|
77 |
-
output_ids = model.generate(**inputs, max_new_tokens=1024)
|
78 |
-
|
79 |
-
generated_ids = output_ids[:, inputs.input_ids.shape[1]:]
|
80 |
-
|
81 |
-
output_text = processor.batch_decode(
|
82 |
-
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
|
83 |
-
)[0]
|
84 |
-
|
85 |
-
# Highlight the queried text
|
86 |
-
def highlight_text(text, query):
|
87 |
-
highlighted_text = text
|
88 |
-
for word in query.split():
|
89 |
-
pattern = re.compile(re.escape(word), re.IGNORECASE)
|
90 |
-
highlighted_text = pattern.sub(lambda m: f'<span style="background-color: yellow;">{m.group()}</span>', highlighted_text)
|
91 |
-
return highlighted_text
|
92 |
-
|
93 |
-
highlighted_output = highlight_text(output_text, text_query)
|
94 |
-
|
95 |
-
st.subheader("Extracted Text (with query highlighted):")
|
96 |
-
st.markdown(highlighted_output, unsafe_allow_html=True)
|
97 |
else:
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModel, AutoTokenizer, Qwen2VLForConditionalGeneration, AutoProcessor
|
2 |
import streamlit as st
|
3 |
+
import os
|
|
|
|
|
4 |
from PIL import Image
|
5 |
+
import requests
|
6 |
import torch
|
7 |
+
import json
|
8 |
+
from torchvision import io
|
9 |
+
from typing import Dict
|
10 |
import re
|
11 |
|
12 |
@st.cache_resource
|
13 |
+
def init_model():
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True)
|
15 |
+
model = AutoModel.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
|
16 |
+
model = model.eval()
|
17 |
+
return model, tokenizer
|
18 |
+
|
19 |
+
def init_gpu_model():
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
|
21 |
+
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
|
22 |
+
model = model.eval().cuda()
|
23 |
+
return model, tokenizer
|
24 |
+
|
25 |
+
def init_qwen_model():
|
26 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", device_map="cpu", torch_dtype=torch.float16)
|
27 |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
|
28 |
+
return model, processor
|
29 |
+
|
30 |
+
def get_quen_op(image_file, model, processor):
|
31 |
+
try:
|
32 |
+
image = Image.open(image_file).convert('RGB')
|
33 |
+
conversation = [
|
34 |
+
{
|
35 |
+
"role":"user",
|
36 |
+
"content":[
|
37 |
+
{
|
38 |
+
"type":"image",
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"type":"text",
|
42 |
+
"text":"Extract text from this image."
|
43 |
+
}
|
44 |
+
]
|
45 |
+
}
|
46 |
+
]
|
47 |
+
text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
|
48 |
+
inputs = processor(text=[text_prompt], images=[image], padding=True, return_tensors="pt")
|
49 |
+
inputs = {k: v.to(torch.float32) if torch.is_floating_point(v) else v for k, v in inputs.items()}
|
50 |
+
|
51 |
+
generation_config = {
|
52 |
+
"max_new_tokens": 32,
|
53 |
+
"do_sample": False,
|
54 |
+
"top_k": 20,
|
55 |
+
"top_p": 0.90,
|
56 |
+
"temperature": 0.4,
|
57 |
+
"num_return_sequences": 1,
|
58 |
+
"pad_token_id": processor.tokenizer.pad_token_id,
|
59 |
+
"eos_token_id": processor.tokenizer.eos_token_id,
|
60 |
+
}
|
61 |
+
|
62 |
+
output_ids = model.generate(**inputs, **generation_config)
|
63 |
+
if 'input_ids' in inputs:
|
64 |
+
generated_ids = output_ids[:, inputs['input_ids'].shape[1]:]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
else:
|
66 |
+
generated_ids = output_ids
|
67 |
+
|
68 |
+
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
69 |
+
|
70 |
+
return output_text[:] if output_text else "No text extracted from the image."
|
71 |
+
|
72 |
+
except Exception as e:
|
73 |
+
return f"An error occurred: {str(e)}"
|
74 |
+
|
75 |
+
@st.cache_data
|
76 |
+
def get_text(image_file, _model, _tokenizer):
|
77 |
+
res = _model.chat(_tokenizer, image_file, ocr_type='ocr')
|
78 |
+
return res
|
79 |
+
|
80 |
+
def highlight_text(text, search_term):
|
81 |
+
if not search_term:
|
82 |
+
return text
|
83 |
+
pattern = re.compile(re.escape(search_term), re.IGNORECASE)
|
84 |
+
return pattern.sub(lambda m: f'<span style="background-color: grey;">{m.group()}</span>', text)
|
85 |
+
|
86 |
+
def save_text_to_json(file_name, text_data):
|
87 |
+
"""Save the extracted text into a JSON file."""
|
88 |
+
with open(file_name, 'w') as json_file:
|
89 |
+
json.dump({"extracted_text": text_data}, json_file, indent=4)
|
90 |
+
st.success(f"Text saved to {file_name}")
|
91 |
+
|
92 |
+
st.title("Extract text from the image using - GOT-OCR2.0 and search keyword")
|
93 |
+
st.write("Upload an image")
|
94 |
+
|
95 |
+
MODEL, PROCESSOR = init_model()
|
96 |
+
|
97 |
+
image_file = st.file_uploader("Upload Image", type=['jpg', 'png', 'jpeg'])
|
98 |
+
|
99 |
+
if image_file:
|
100 |
+
if not os.path.exists("images"):
|
101 |
+
os.makedirs("images")
|
102 |
+
with open(f"images/{image_file.name}", "wb") as f:
|
103 |
+
f.write(image_file.getbuffer())
|
104 |
+
|
105 |
+
image_file = f"images/{image_file.name}"
|
106 |
+
|
107 |
+
text = get_text(image_file, MODEL, PROCESSOR)
|
108 |
+
|
109 |
+
print(text)
|
110 |
+
|
111 |
+
# Add search functionality
|
112 |
+
search_term = st.text_input("Enter a word or phrase to search:")
|
113 |
+
highlighted_text = highlight_text(text, search_term)
|
114 |
+
|
115 |
+
st.markdown(highlighted_text, unsafe_allow_html=True)
|
116 |
+
|
117 |
+
# Save the extracted text in JSON
|
118 |
+
json_file_path = f"{image_file}_extracted.json"
|
119 |
+
save_text_to_json(json_file_path, text)
|