File size: 4,383 Bytes
e767916 639d737 e767916 639d737 e767916 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import gradio as gr
import numpy as np
import torch
from datasets import load_dataset
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# load speech translation checkpoint
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large-v2", device=device)
# load text-to-speech checkpoint and speaker embeddings
model_id = "Sandiago21/speecht5_finetuned_mozilla_foundation_common_voice_13_german" # update with your model id
# pipe = pipeline("automatic-speech-recognition", model=model_id)
model = SpeechT5ForTextToSpeech.from_pretrained(model_id)
processor = SpeechT5Processor.from_pretrained(model_id)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embeddings = torch.tensor(embeddings_dataset[7440]["xvector"]).unsqueeze(0)
replacements = [
("Ä", "E"),
("Æ", "E"),
("Ç", "C"),
("É", "E"),
("Í", "I"),
("Ó", "O"),
("Ö", "E"),
("Ü", "Y"),
("ß", "S"),
("à", "a"),
("á", "a"),
("ã", "a"),
("ä", "e"),
("å", "a"),
("ë", "e"),
("í", "i"),
("ï", "i"),
("ð", "o"),
("ñ", "n"),
("ò", "o"),
("ó", "o"),
("ô", "o"),
("ö", "u"),
("ú", "u"),
("ü", "y"),
("ý", "y"),
("Ā", "A"),
("ā", "a"),
("ă", "a"),
("ą", "a"),
("ć", "c"),
("Č", "C"),
("č", "c"),
("ď", "d"),
("Đ", "D"),
("ę", "e"),
("ě", "e"),
("ğ", "g"),
("İ", "I"),
("О", "O"),
("Ł", "L"),
("ń", "n"),
("ň", "n"),
("Ō", "O"),
("ō", "o"),
("ő", "o"),
("ř", "r"),
("Ś", "S"),
("ś", "s"),
("Ş", "S"),
("ş", "s"),
("Š", "S"),
("š", "s"),
("ū", "u"),
("ź", "z"),
("Ż", "Z"),
("Ž", "Z"),
("ǐ", "i"),
("ǐ", "i"),
("ș", "s"),
("ț", "t"),
]
def cleanup_text(text):
for src, dst in replacements:
text = text.replace(src, dst)
return text
def transcribe_to_german(audio):
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "german"})
return outputs["text"]
def synthesise_from_german(text):
text = cleanup_text(text)
inputs = processor(text=text, return_tensors="pt")
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
return speech.cpu()
def speech_to_speech_translation(audio):
translated_text = transcribe_to_german(audio)
synthesised_speech = synthesise_from_german(translated_text)
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
return ((16000, synthesised_speech), translated_text)
title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in German. Demo uses OpenAI's [Whisper Large v2](https://huggingface.co/openai/whisper-large-v2) model for speech translation, and [Sandiago21/speecht5_finetuned_mozilla_foundation_common_voice_13_german](https://huggingface.co/Sandiago21/speecht5_finetuned_mozilla_foundation_common_voice_13_german) checkpoint for text-to-speech, which is based on Microsoft's
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech, fine-tuned in German Audio dataset:
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""
demo = gr.Blocks()
mic_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs=[gr.Audio(label="Generated Speech", type="numpy"), gr.outputs.Textbox()],
title=title,
description=description,
)
file_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="upload", type="filepath"),
outputs=[gr.Audio(label="Generated Speech", type="numpy"), gr.outputs.Textbox()],
examples=[["./example.wav"]],
title=title,
description=description,
)
with demo:
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
demo.launch()
|