import gradio as gr from transformers import AutoProcessor, Pix2StructForConditionalGeneration, T5Tokenizer, T5ForConditionalGeneration, Pix2StructProcessor, BartConfig,ViTConfig,VisionEncoderDecoderConfig, DonutProcessor, VisionEncoderDecoderModel, AutoTokenizer, AutoModel from PIL import Image import torch import warnings import re import json import os import numpy as np import pandas as pd from tqdm import tqdm import argparse from scipy import optimize from typing import Optional import dataclasses import editdistance import itertools import sys import time import logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger() warnings.filterwarnings('ignore') MAX_PATCHES = 512 # Load the models and processor #device = torch.device("cpu") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Paths to the models ko_deplot_model_path = './deplot_model_ver_kor_24.7.25_refinetuning_epoch1.bin' aihub_deplot_model_path='./deplot_k.pt' t5_model_path = './ke_t5.pt' # Load first model ko-deplot processor1 = Pix2StructProcessor.from_pretrained('nuua/ko-deplot') model1 = Pix2StructForConditionalGeneration.from_pretrained('nuua/ko-deplot') model1.load_state_dict(torch.load(ko_deplot_model_path, map_location=device)) model1.to(device) # Load second model aihub-deplot processor2 = AutoProcessor.from_pretrained("ybelkada/pix2struct-base") model2 = Pix2StructForConditionalGeneration.from_pretrained("ybelkada/pix2struct-base") model2.load_state_dict(torch.load(aihub_deplot_model_path, map_location=device)) tokenizer = T5Tokenizer.from_pretrained("KETI-AIR/ke-t5-base") t5_model = T5ForConditionalGeneration.from_pretrained("KETI-AIR/ke-t5-base") t5_model.load_state_dict(torch.load(t5_model_path, map_location=device)) model2.to(device) t5_model.to(device) #Load third model unichart unichart_model_path = "./unichart" model3 = VisionEncoderDecoderModel.from_pretrained(unichart_model_path) processor3 = DonutProcessor.from_pretrained(unichart_model_path) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model3.to(device) #ko-deplot 추론함수 # Function to format output def format_output(prediction): return prediction.replace('<0x0A>', '\n') # First model prediction ko-deplot def predict_model1(image): images = [image] inputs = processor1(images=images, text="What is the title of the chart", return_tensors="pt", padding=True) inputs = {k: v.to(device) for k, v in inputs.items()} # Move to GPU model1.eval() with torch.no_grad(): predictions = model1.generate(**inputs, max_new_tokens=4096) outputs = [processor1.decode(pred, skip_special_tokens=True) for pred in predictions] formatted_output = format_output(outputs[0]) return formatted_output def replace_unk(text): # 1. '제목:', '유형:' 글자 앞에 있는 는 \n로 바꿈 text = re.sub(r'(?=제목:|유형:)', '\n', text) # 2. '세로 ' 또는 '가로 '와 '대형' 사이에 있는 를 ""로 바꿈 text = re.sub(r'(?<=세로 |가로 )(?=대형)', '', text) # 3. 숫자와 텍스트 사이에 있는 를 \n로 바꿈 text = re.sub(r'(\d)([^\d])', r'\1\n\2', text) # 4. %, 원, 건, 명 뒤에 나오는 를 \n로 바꿈 text = re.sub(r'(?<=[%원건명\)])', '\n', text) # 5. 숫자와 숫자 사이에 있는 를 \n로 바꿈 text = re.sub(r'(\d)(\d)', r'\1\n\2', text) # 6. '형'이라는 글자와 ' |' 사이에 있는 를 \n로 바꿈 text = re.sub(r'형(?= \|)', '형\n', text) # 7. 나머지 를 모두 ""로 바꿈 text = text.replace('', '') return text # Second model prediction aihub_deplot def predict_model2(image): image = image.convert("RGB") inputs = processor2(images=image, return_tensors="pt", max_patches=MAX_PATCHES).to(device) flattened_patches = inputs.flattened_patches.to(device) attention_mask = inputs.attention_mask.to(device) model2.eval() t5_model.eval() with torch.no_grad(): deplot_generated_ids = model2.generate(flattened_patches=flattened_patches, attention_mask=attention_mask, max_length=1000) generated_datatable = processor2.batch_decode(deplot_generated_ids, skip_special_tokens=False)[0] generated_datatable = generated_datatable.replace("", "").replace("", "") refined_table = replace_unk(generated_datatable) return refined_table def predict_model3(image): image=image.convert("RGB") input_prompt = " " decoder_input_ids = processor3.tokenizer(input_prompt, add_special_tokens=False, return_tensors="pt").input_ids pixel_values = processor3(image, return_tensors="pt").pixel_values outputs = model3.generate( pixel_values.to(device), decoder_input_ids=decoder_input_ids.to(device), max_length=model3.decoder.config.max_position_embeddings, early_stopping=True, pad_token_id=processor3.tokenizer.pad_token_id, eos_token_id=processor3.tokenizer.eos_token_id, use_cache=True, num_beams=4, bad_words_ids=[[processor3.tokenizer.unk_token_id]], return_dict_in_generate=True, ) sequence = processor3.batch_decode(outputs.sequences)[0] sequence = sequence.replace(processor3.tokenizer.eos_token, "").replace(processor3.tokenizer.pad_token, "") sequence = sequence.split("")[-1].strip() return sequence #function for converting aihub dataset labeling json file to ko-deplot data table def process_json_file(input_file): with open(input_file, 'r', encoding='utf-8') as file: data = json.load(file) # 필요한 데이터 추출 chart_type = data['metadata']['chart_sub'] title = data['annotations'][0]['title'] x_axis = data['annotations'][0]['axis_label']['x_axis'] y_axis = data['annotations'][0]['axis_label']['y_axis'] legend = data['annotations'][0]['legend'] data_labels = data['annotations'][0]['data_label'] is_legend = data['annotations'][0]['is_legend'] # 원하는 형식으로 변환 formatted_string = f"TITLE | {title} <0x0A> " if '가로' in chart_type: if is_legend: # 가로 차트 처리 formatted_string += " | ".join(legend) + " <0x0A> " for i in range(len(y_axis)): row = [y_axis[i]] for j in range(len(legend)): if i < len(data_labels[j]): row.append(str(data_labels[j][i])) # 데이터 값을 문자열로 변환 else: row.append("") # 데이터가 없는 경우 빈 문자열 추가 formatted_string += " | ".join(row) + " <0x0A> " else: # is_legend가 False인 경우 for i in range(len(y_axis)): row = [y_axis[i], str(data_labels[0][i])] formatted_string += " | ".join(row) + " <0x0A> " elif chart_type == "원형": # 원형 차트 처리 if legend: used_labels = legend else: used_labels = x_axis formatted_string += " | ".join(used_labels) + " <0x0A> " row = [data_labels[0][i] for i in range(len(used_labels))] formatted_string += " | ".join(row) + " <0x0A> " elif chart_type == "혼합형": # 혼합형 차트 처리 all_legends = [ann['legend'][0] for ann in data['annotations']] formatted_string += " | ".join(all_legends) + " <0x0A> " combined_data = [] for i in range(len(x_axis)): row = [x_axis[i]] for ann in data['annotations']: if i < len(ann['data_label'][0]): row.append(str(ann['data_label'][0][i])) # 데이터 값을 문자열로 변환 else: row.append("") # 데이터가 없는 경우 빈 문자열 추가 combined_data.append(" | ".join(row)) formatted_string += " <0x0A> ".join(combined_data) + " <0x0A> " else: # 기타 차트 처리 if is_legend: formatted_string += " | ".join(legend) + " <0x0A> " for i in range(len(x_axis)): row = [x_axis[i]] for j in range(len(legend)): if i < len(data_labels[j]): row.append(str(data_labels[j][i])) # 데이터 값을 문자열로 변환 else: row.append("") # 데이터가 없는 경우 빈 문자열 추가 formatted_string += " | ".join(row) + " <0x0A> " else: for i in range(len(x_axis)): if i < len(data_labels[0]): formatted_string += f"{x_axis[i]} | {str(data_labels[0][i])} <0x0A> " else: formatted_string += f"{x_axis[i]} | <0x0A> " # 데이터가 없는 경우 빈 문자열 추가 # 마지막 "<0x0A> " 제거 formatted_string = formatted_string[:-8] return format_output(formatted_string) def chart_data(data): datatable = [] num = len(data) for n in range(num): title = data[n]['title'] if data[n]['is_title'] else '' legend = data[n]['legend'] if data[n]['is_legend'] else '' datalabel = data[n]['data_label'] if data[n]['is_datalabel'] else [0] unit = data[n]['unit'] if data[n]['is_unit'] else '' base = data[n]['base'] if data[n]['is_base'] else '' x_axis_title = data[n]['axis_title']['x_axis'] y_axis_title = data[n]['axis_title']['y_axis'] x_axis = data[n]['axis_label']['x_axis'] if data[n]['is_axis_label_x_axis'] else [0] y_axis = data[n]['axis_label']['y_axis'] if data[n]['is_axis_label_y_axis'] else [0] if len(legend) > 1: datalabel = np.array(datalabel).transpose().tolist() datatable.append([title, legend, datalabel, unit, base, x_axis_title, y_axis_title, x_axis, y_axis]) return datatable def datatable(data, chart_type): data_table = '' num = len(data) if len(data) == 2: temp = [] temp.append(f"대상: {data[0][4]}") temp.append(f"제목: {data[0][0]}") temp.append(f"유형: {' '.join(chart_type[0:2])}") temp.append(f"{data[0][5]} | {data[0][1][0]}({data[0][3]}) | {data[1][1][0]}({data[1][3]})") x_axis = data[0][7] for idx, x in enumerate(x_axis): temp.append(f"{x} | {data[0][2][0][idx]} | {data[1][2][0][idx]}") data_table = '\n'.join(temp) else: for n in range(num): temp = [] title, legend, datalabel, unit, base, x_axis_title, y_axis_title, x_axis, y_axis = data[n] legend = [element + f"({unit})" for element in legend] if len(legend) > 1: temp.append(f"대상: {base}") temp.append(f"제목: {title}") temp.append(f"유형: {' '.join(chart_type[0:2])}") temp.append(f"{x_axis_title} | {' | '.join(legend)}") if chart_type[2] == "원형": datalabel = sum(datalabel, []) temp.append(f"{' | '.join([str(d) for d in datalabel])}") data_table = '\n'.join(temp) else: axis = y_axis if chart_type[2] == "가로 막대형" else x_axis for idx, (x, d) in enumerate(zip(axis, datalabel)): temp_d = [str(e) for e in d] temp_d = " | ".join(temp_d) row = f"{x} | {temp_d}" temp.append(row) data_table = '\n'.join(temp) else: temp.append(f"대상: {base}") temp.append(f"제목: {title}") temp.append(f"유형: {' '.join(chart_type[0:2])}") temp.append(f"{x_axis_title} | {unit}") axis = y_axis if chart_type[2] == "가로 막대형" else x_axis datalabel = datalabel[0] for idx, x in enumerate(axis): row = f"{x} | {str(datalabel[idx])}" temp.append(row) data_table = '\n'.join(temp) return data_table #function for converting aihub dataset labeling json file to aihub-deplot data table def process_json_file2(input_file): with open(input_file, 'r', encoding='utf-8') as file: data = json.load(file) # 필요한 데이터 추출 chart_multi = data['metadata']['chart_multi'] chart_main = data['metadata']['chart_main'] chart_sub = data['metadata']['chart_sub'] chart_type = [chart_multi, chart_sub, chart_main] chart_annotations = data['annotations'] charData = chart_data(chart_annotations) dataTable = datatable(charData, chart_type) return dataTable # RMS def _to_float(text): # 단위 떼고 숫자만..? try: if text.endswith("%"): # Convert percentages to floats. return float(text.rstrip("%")) / 100.0 else: return float(text) except ValueError: return None def _get_relative_distance( target, prediction, theta = 1.0 ): """Returns min(1, |target-prediction|/|target|).""" if not target: return int(not prediction) distance = min(abs((target - prediction) / target), 1) return distance if distance < theta else 1 def anls_metric(target: str, prediction: str, theta: float = 0.5): edit_distance = editdistance.eval(target, prediction) normalize_ld = edit_distance / max(len(target), len(prediction)) return 1 - normalize_ld if normalize_ld < theta else 0 def _permute(values, indexes): return tuple(values[i] if i < len(values) else "" for i in indexes) @dataclasses.dataclass(frozen=True) class Table: """Helper class for the content of a markdown table.""" base: Optional[str] = None title: Optional[str] = None chartType: Optional[str] = None headers: tuple[str, Ellipsis] = dataclasses.field(default_factory=tuple) rows: tuple[tuple[str, Ellipsis], Ellipsis] = dataclasses.field(default_factory=tuple) def permuted(self, indexes): """Builds a version of the table changing the column order.""" return Table( base=self.base, title=self.title, chartType=self.chartType, headers=_permute(self.headers, indexes), rows=tuple(_permute(row, indexes) for row in self.rows), ) def aligned( self, headers, text_theta = 0.5 ): """Builds a column permutation with headers in the most correct order.""" if len(headers) != len(self.headers): raise ValueError(f"Header length {headers} must match {self.headers}.") distance = [] for h2 in self.headers: distance.append( [ 1 - anls_metric(h1, h2, text_theta) for h1 in headers ] ) cost_matrix = np.array(distance) row_ind, col_ind = optimize.linear_sum_assignment(cost_matrix) permutation = [idx for _, idx in sorted(zip(col_ind, row_ind))] score = (1 - cost_matrix)[permutation[1:], range(1, len(row_ind))].prod() return self.permuted(permutation), score def _parse_table(text, transposed = False): # 표 제목, 열 이름, 행 찾기 """Builds a table from a markdown representation.""" lines = text.lower().splitlines() if not lines: return Table() if lines[0].startswith("대상: "): base = lines[0][len("대상: ") :].strip() offset = 1 # else: base = None offset = 0 if lines[1].startswith("제목: "): title = lines[1][len("제목: ") :].strip() offset = 2 # else: title = None offset = 1 if lines[2].startswith("유형: "): chartType = lines[2][len("유형: ") :].strip() offset = 3 # else: chartType = None if len(lines) < offset + 1: return Table(base=base, title=title, chartType=chartType) rows = [] for line in lines[offset:]: rows.append(tuple(v.strip() for v in line.split(" | "))) if transposed: rows = [tuple(row) for row in itertools.zip_longest(*rows, fillvalue="")] return Table(base=base, title=title, chartType=chartType, headers=rows[0], rows=tuple(rows[1:])) def _get_table_datapoints(table): datapoints = {} if table.base is not None: datapoints["대상"] = table.base if table.title is not None: datapoints["제목"] = table.title if table.chartType is not None: datapoints["유형"] = table.chartType if not table.rows or len(table.headers) <= 1: return datapoints for row in table.rows: for header, cell in zip(table.headers[1:], row[1:]): #print(f"{row[0]} {header} >> {cell}") datapoints[f"{row[0]} {header}"] = cell # return datapoints def _get_datapoint_metric( # target, prediction, text_theta=0.5, number_theta=0.1, ): """Computes a metric that scores how similar two datapoint pairs are.""" key_metric = anls_metric( target[0], prediction[0], text_theta ) pred_float = _to_float(prediction[1]) # 숫자인지 확인 target_float = _to_float(target[1]) if pred_float is not None and target_float: return key_metric * ( 1 - _get_relative_distance(target_float, pred_float, number_theta) # 숫자면 상대적 거리값 계산 ) elif target[1] == prediction[1]: return key_metric else: return key_metric * anls_metric( target[1], prediction[1], text_theta ) def _table_datapoints_precision_recall_f1( # 찐 계산 target_table, prediction_table, text_theta = 0.5, number_theta = 0.1, ): """Calculates matching similarity between two tables as dicts.""" target_datapoints = list(_get_table_datapoints(target_table).items()) prediction_datapoints = list(_get_table_datapoints(prediction_table).items()) if not target_datapoints and not prediction_datapoints: return 1, 1, 1 if not target_datapoints: return 0, 1, 0 if not prediction_datapoints: return 1, 0, 0 distance = [] for t, _ in target_datapoints: distance.append( [ 1 - anls_metric(t, p, text_theta) for p, _ in prediction_datapoints ] ) cost_matrix = np.array(distance) row_ind, col_ind = optimize.linear_sum_assignment(cost_matrix) score = 0 for r, c in zip(row_ind, col_ind): score += _get_datapoint_metric( target_datapoints[r], prediction_datapoints[c], text_theta, number_theta ) if score == 0: return 0, 0, 0 precision = score / len(prediction_datapoints) recall = score / len(target_datapoints) return precision, recall, 2 * precision * recall / (precision + recall) def table_datapoints_precision_recall_per_point( # 각각 계산... targets, predictions, text_theta = 0.5, number_theta = 0.1, ): """Computes precisin recall and F1 metrics given two flattened tables. Parses each string into a dictionary of keys and values using row and column headers. Then we match keys between the two dicts as long as their relative levenshtein distance is below a threshold. Values are also compared with ANLS if strings or relative distance if they are numeric. Args: targets: list of list of strings. predictions: list of strings. text_theta: relative edit distance above this is set to the maximum of 1. number_theta: relative error rate above this is set to the maximum of 1. Returns: Dictionary with per-point precision, recall and F1 """ assert len(targets) == len(predictions) per_point_scores = {"precision": [], "recall": [], "f1": []} for pred, target in zip(predictions, targets): all_metrics = [] for transposed in [True, False]: pred_table = _parse_table(pred, transposed=transposed) target_table = _parse_table(target, transposed=transposed) all_metrics.extend([_table_datapoints_precision_recall_f1(target_table, pred_table, text_theta, number_theta)]) p, r, f = max(all_metrics, key=lambda x: x[-1]) per_point_scores["precision"].append(p) per_point_scores["recall"].append(r) per_point_scores["f1"].append(f) return per_point_scores def table_datapoints_precision_recall( # deplot 성능지표 targets, predictions, text_theta = 0.5, number_theta = 0.1, ): """Aggregated version of table_datapoints_precision_recall_per_point(). Same as table_datapoints_precision_recall_per_point() but returning aggregated scores instead of per-point scores. Args: targets: list of list of strings. predictions: list of strings. text_theta: relative edit distance above this is set to the maximum of 1. number_theta: relative error rate above this is set to the maximum of 1. Returns: Dictionary with aggregated precision, recall and F1 """ score_dict = table_datapoints_precision_recall_per_point( targets, predictions, text_theta, number_theta ) return { "table_datapoints_precision": ( sum(score_dict["precision"]) / len(targets) ), "table_datapoints_recall": ( sum(score_dict["recall"]) / len(targets) ), "table_datapoints_f1": sum(score_dict["f1"]) / len(targets), } def evaluate_rms(generated_table,label_table): predictions=[generated_table] targets=[label_table] RMS = table_datapoints_precision_recall(targets, predictions) return RMS def ko_deplot_convert_to_dataframe(generated_table_str): lines = generated_table_str.strip().split(" \n") headers=[] data=[] for i in range(len(lines[1].split(" | "))): headers.append(f"{i}") for line in lines[1:len(lines)-1]: data.append(line.split("| ")) df = pd.DataFrame(data, columns=headers) return df def ko_deplot_convert_to_dataframe2(label_table_str): lines = label_table_str.strip().split(" \n") headers=[] data=[] for i in range(len(lines[1].split(" | "))): headers.append(f"{i}") for line in lines[1:]: data.append(line.split("| ")) df = pd.DataFrame(data, columns=headers) return df def aihub_deplot_convert_to_dataframe(table_str): lines = table_str.strip().split("\n") headers = [] if(len(lines[3].split(" | "))>len(lines[4].split(" | "))): category=lines[3].split(" | ") del category[0] value=lines[4].split(" | ") df=pd.DataFrame({"범례":category,"값":value}) return df else: for i in range(len(lines[3].split(" | "))): headers.append(f"{i}") data = [line.split(" | ") for line in lines[3:]] df = pd.DataFrame(data, columns=headers) return df def unichart_convert_to_dataframe(table_str): lines=table_str.split(" & ") headers=[] data=[] del lines[0] for i in range(len(lines[1].split(" | "))): headers.append(f"{i}") if lines[0]=="value": for line in lines[1:]: data.append(line.split(" | ")) else: category=lines[0].split(" | ") category.insert(0," ") data.append(category) for line in lines[1:]: data.append(line.split(" | ")) df=pd.DataFrame(data,columns=headers) return df class Highlighter: def __init__(self): self.row = 0 self.col = 0 def compare_and_highlight(self, pred_table_elem, target_table, pred_table_row, props=''): if self.row >= pred_table_row: self.col += 1 self.row = 0 if pred_table_elem != target_table.iloc[self.row, self.col]: self.row += 1 return props else: self.row += 1 return None # 1. 데이터 로드 aihub_deplot_result_df = pd.read_csv('./aihub_deplot_result.csv') ko_deplot_result= './ko-deplot-base-pred-epoch1-refinetuning.json' unichart_result='./unichart_results.json' # 2. 체크해야 하는 이미지 파일 로드 def load_image_checklist(file): with open(file, 'r') as f: #image_names = [f'"{line.strip()}"' for line in f] image_names = f.read().splitlines() return image_names # 3. 현재 인덱스를 추적하기 위한 변수 current_index = 0 image_names = [] def show_image(current_idx): image_name=image_names[current_idx] image_path = f"./images/{image_name}.jpg" if not os.path.exists(image_path): raise FileNotFoundError(f"Image file not found: {image_path}") return Image.open(image_path) # 4. 버튼 클릭 이벤트 핸들러 def non_real_time_check(file): highlighter1 = Highlighter() highlighter2 = Highlighter() highlighter3 = Highlighter() #global image_names, current_index #image_names = load_image_checklist(file) #current_index = 0 #image=show_image(current_index) file_name =image_names[current_index].replace("Source","Label") json_path="./ko_deplot_labeling_data.json" with open(json_path, 'r', encoding='utf-8') as file: json_data = json.load(file) for key, value in json_data.items(): if key == file_name: ko_deplot_labeling_str=value.get("txt").replace("<0x0A>","\n") ko_deplot_label_title=ko_deplot_labeling_str.split(" \n ")[0].replace("TITLE | ","제목:") break ko_deplot_rms_path="./ko_deplot_rms.txt" unichart_rms_path="./unichart_rms.txt" json_path="./unichart_labeling_data.json" with open(json_path, 'r', encoding='utf-8') as file: json_data = json.load(file) for entry in json_data: if entry["imgname"]==image_names[current_index]+".jpg": unichart_labeling_str=entry["label"] unichart_label_title=entry["label"].split(" & ")[0].split(" | ")[1] with open(ko_deplot_rms_path,'r',encoding='utf-8') as file: lines=file.readlines() flag=0 for line in lines: parts=line.strip().split(", ") if(len(parts)==2 and parts[0]==image_names[current_index]): ko_deplot_rms=parts[1] flag=1 break if(flag==0): ko_deplot_rms="none" with open(unichart_rms_path,'r',encoding='utf-8') as file: lines=file.readlines() flag=0 for line in lines: parts=line.strip().split(": ") if(len(parts)==2 and parts[0]==image_names[current_index]+".jpg"): unichart_rms=parts[1] flag=1 break if(flag==0): unichart_rms="none" ko_deplot_generated_title,ko_deplot_generated_table=ko_deplot_display_results(current_index) aihub_deplot_generated_table,aihub_deplot_label_table,aihub_deplot_generated_title,aihub_deplot_label_title=aihub_deplot_display_results(current_index) unichart_generated_table,unichart_generated_title=unichart_display_results(current_index) #ko_deplot_RMS=evaluate_rms(ko_deplot_generated_table,ko_deplot_labeling_str) aihub_deplot_RMS=evaluate_rms(aihub_deplot_generated_table,aihub_deplot_label_table) if flag == 1: value = [round(float(ko_deplot_rms), 1)] else: value = [0] ko_deplot_score_table = pd.DataFrame({ 'category': ['f1'], 'value': value }) value=[round(float(unichart_rms)/100,1)] unichart_score_table=pd.DataFrame({ 'category':['f1'], 'value':value }) aihub_deplot_score_table=pd.DataFrame({ 'category': ['precision', 'recall', 'f1'], 'value': [ round(aihub_deplot_RMS['table_datapoints_precision'],1), round(aihub_deplot_RMS['table_datapoints_recall'],1), round(aihub_deplot_RMS['table_datapoints_f1'],1) ] }) ko_deplot_generated_df=ko_deplot_convert_to_dataframe(ko_deplot_generated_table) aihub_deplot_generated_df=aihub_deplot_convert_to_dataframe(aihub_deplot_generated_table) unichart_generated_df=unichart_convert_to_dataframe(unichart_generated_table) ko_deplot_labeling_df=ko_deplot_convert_to_dataframe2(ko_deplot_labeling_str) aihub_deplot_labeling_df=aihub_deplot_convert_to_dataframe(aihub_deplot_label_table) unichart_labeling_df=unichart_convert_to_dataframe(unichart_labeling_str) ko_deplot_generated_df_row=ko_deplot_generated_df.shape[0] aihub_deplot_generated_df_row=aihub_deplot_generated_df.shape[0] unichart_generated_df_row=unichart_generated_df.shape[0] styled_ko_deplot_table=ko_deplot_generated_df.style.applymap(highlighter1.compare_and_highlight,target_table=ko_deplot_labeling_df,pred_table_row=ko_deplot_generated_df_row,props='color:red') styled_aihub_deplot_table=aihub_deplot_generated_df.style.applymap(highlighter2.compare_and_highlight,target_table=aihub_deplot_labeling_df,pred_table_row=aihub_deplot_generated_df_row,props='color:red') styled_unichart_table=unichart_generated_df.style.applymap(highlighter3.compare_and_highlight,target_table=unichart_labeling_df,pred_table_row=unichart_generated_df_row,props='color:red') #return ko_deplot_convert_to_dataframe(ko_deplot_generated_table), aihub_deplot_convert_to_dataframe(aihub_deplot_generated_table), aihub_deplot_convert_to_dataframe(label_table), ko_deplot_score_table, aihub_deplot_score_table return gr.DataFrame(styled_ko_deplot_table,label=ko_deplot_generated_title+"(ko deplot 추론 결과)"),gr.DataFrame(styled_aihub_deplot_table,label=aihub_deplot_generated_title+"(aihub deplot 추론 결과)"),gr.DataFrame(styled_unichart_table,label="제목:"+unichart_generated_title+"(unichart 추론 결과)"),gr.DataFrame(ko_deplot_labeling_df,label=ko_deplot_label_title+"(ko deplot 정답 테이블)"), gr.DataFrame(aihub_deplot_labeling_df,label=aihub_deplot_label_title+"(aihub deplot 정답 테이블)"),gr.DataFrame(unichart_labeling_df,label="제목:"+unichart_label_title+"(unichart 정답 테이블)"),ko_deplot_score_table, aihub_deplot_score_table,unichart_score_table def ko_deplot_display_results(index): filename=image_names[index]+".jpg" with open(ko_deplot_result, 'r', encoding='utf-8') as f: data = json.load(f) for entry in data: if entry['filename'].endswith(filename): #return entry['table'] parts=entry['table'].split("\n",1) return parts[0].replace("TITLE | ","제목:"),entry['table'] def aihub_deplot_display_results(index): if index < 0 or index >= len(image_names): return "Index out of range", None, None image_name = image_names[index] image_row = aihub_deplot_result_df[aihub_deplot_result_df['data_id'] == image_name] if not image_row.empty: generated_table = image_row['generated_table'].values[0] generated_title=generated_table.split("\n")[1] label_table = image_row['label_table'].values[0] label_title=label_table.split("\n")[1] return generated_table, label_table, generated_title, label_title else: return "No results found for the image", None, None def unichart_display_results(index): image_name=image_names[index] with open(unichart_result,'r',encoding='utf-8') as f: data=json.load(f) for entry in data: if entry['imgname']==image_name+".jpg": return entry['label'],entry['label'].split(" & ")[0].split(" | ")[1] def previous_image(): global current_index if current_index>0: current_index-=1 image=show_image(current_index) return image, image_names[current_index],gr.update(interactive=current_index>0), gr.update(interactive=current_index0), gr.update(interactive=current_index","\n") ko_deplot_label_title=ko_deplot_labeling_str.split(" \n ")[0].split(" | ")[1] break ko_deplot_label_table=ko_deplot_convert_to_dataframe2(ko_deplot_labeling_str) #aihub_deplot_labeling_str=process_json_file2(aihub_labeling_data_json) #aihub_deplot_label_title=aihub_deplot_labeling_str.split("\n")[1].split(":")[1] image_row = aihub_deplot_result_df[aihub_deplot_result_df['data_id'] == file_name.replace("Label","Source")] label_table="" label_title="" if not image_row.empty: label_table = image_row['label_table'].values[0] label_title=label_table.split("\n")[1] aihub_deplot_label_table=aihub_deplot_convert_to_dataframe(label_table) json_path="./unichart_labeling_data.json" with open(json_path, 'r', encoding='utf-8') as file: json_data = json.load(file) for entry in json_data: if entry["imgname"]==os.path.basename(image_file.name): unichart_labeling_str=entry["label"] unichart_label_title=entry["label"].split(" & ")[0].split(" | ")[1] unichart_label_table=unichart_convert_to_dataframe(unichart_labeling_str) ko_deplot_RMS=evaluate_rms(result_model1,ko_deplot_labeling_str) aihub_deplot_RMS=evaluate_rms(result_model2,label_table) unichart_RMS=evaluate_rms(result_model3.replace("Characteristic","Title").replace("&","\n"),unichart_labeling_str.replace("Characteristic","Title").replace("&","\n")) ko_deplot_score_table=pd.DataFrame({ 'category': ['precision', 'recall', 'f1'], 'value': [ round(ko_deplot_RMS['table_datapoints_precision'],1), round(ko_deplot_RMS['table_datapoints_recall'],1), round(ko_deplot_RMS['table_datapoints_f1'],1) ] }) aihub_deplot_score_table=pd.DataFrame({ 'category': ['precision', 'recall', 'f1'], 'value': [ round(aihub_deplot_RMS['table_datapoints_precision'],1), round(aihub_deplot_RMS['table_datapoints_recall'],1), round(aihub_deplot_RMS['table_datapoints_f1'],1) ] }) unichart_score_table=pd.DataFrame({ 'category': ['precision', 'recall', 'f1'], 'value': [ round(unichart_RMS['table_datapoints_precision'],1), round(unichart_RMS['table_datapoints_recall'],1), round(unichart_RMS['table_datapoints_f1'],1) ] }) ko_deplot_generated_df_row=ko_deplot_table.shape[0] aihub_deplot_generated_df_row=aihub_deplot_table.shape[0] unichart_generated_df_row=unichart_table.shape[0] styled_ko_deplot_table=ko_deplot_table.style.applymap(highlighter1.compare_and_highlight,target_table=ko_deplot_label_table,pred_table_row=ko_deplot_generated_df_row,props='color:red') styled_aihub_deplot_table=aihub_deplot_table.style.applymap(highlighter2.compare_and_highlight,target_table=aihub_deplot_label_table,pred_table_row=aihub_deplot_generated_df_row,props='color:red') styled_unichart_table=unichart_table.style.applymap(highlighter3.compare_and_highlight,target_table=unichart_label_table,pred_table_row=unichart_generated_df_row,props='color:red') return gr.DataFrame(styled_ko_deplot_table,label=ko_deplot_generated_title+"(kodeplot 추론 결과)") , gr.DataFrame(styled_aihub_deplot_table,label=aihub_deplot_generated_title+"(aihub deplot 추론 결과)"),gr.DataFrame(styled_unichart_table,label=unichart_generated_title+"(unichart 추론 결과)"),gr.DataFrame(ko_deplot_label_table,label=ko_deplot_label_title+"(kodeplot 정답 테이블)"),gr.DataFrame(aihub_deplot_label_table,label=label_title+"(aihub deplot 정답 테이블)"),gr.DataFrame(unichart_label_table,label=unichart_label_title+"(unichart 정답 테이블)"),ko_deplot_score_table, aihub_deplot_score_table,unichart_score_table #return ko_deplot_table,aihub_deplot_table,aihub_deplot_label_table,ko_deplot_score_table,aihub_deplot_score_table def inference(mode,image_uploader,file_uploader): if(mode=="이미지 업로드"): ko_deplot_table, aihub_deplot_table, unichart_table, ko_deplot_label_table,aihub_deplot_label_table,unichart_label_table,ko_deplot_score_table, aihub_deplot_score_table,unichart_score_table= real_time_check(image_uploader) return ko_deplot_table, aihub_deplot_table, unichart_table,ko_deplot_label_table, aihub_deplot_label_table,unichart_label_table,ko_deplot_score_table, aihub_deplot_score_table,unichart_score_table else: styled_ko_deplot_table,styled_aihub_deplot_table,styled_unichart_table,ko_deplot_label_table,aihub_deplot_label_table,unichart_label_table,ko_deplot_score_table,aihub_deplot_score_table, unichart_score_table=non_real_time_check(file_uploader) return styled_ko_deplot_table, styled_aihub_deplot_table, styled_unichart_table,ko_deplot_label_table,aihub_deplot_label_table,unichart_label_table,ko_deplot_score_table, aihub_deplot_score_table, unichart_score_table def interface_selector(selector): if selector == "이미지 업로드": return gr.update(visible=True),gr.update(visible=False),gr.State("image_upload"),gr.update(visible=False),gr.update(visible=False) elif selector == "파일 업로드": return gr.update(visible=False),gr.update(visible=True),gr.State("file_upload"), gr.update(visible=True),gr.update(visible=True) def file_selector(selector): if selector == "low score 차트": return gr.File("./new_bottom_20_percent_images.txt") elif selector == "high score 차트": return gr.File("./new_top_20_percent_images.txt") def update_results(model_type): if "ko_deplot" == model_type: return gr.update(visible=True),gr.update(visible=True),gr.update(visible=False),gr.update(visible=False),gr.update(visible=False),gr.update(visible=False),gr.update(visible=True),gr.update(visible=False),gr.update(visible=False) elif "aihub_deplot" == model_type: return gr.update(visible=False),gr.update(visible=False),gr.update(visible=True),gr.update(visible=True),gr.update(visible=False),gr.update(visible=False),gr.update(visible=False),gr.update(visible=True),gr.update(visible=False) elif "unichart"==model_type: return gr.update(visible=False),gr.update(visible=False),gr.update(visible=False),gr.update(visible=False),gr.update(visible=True),gr.update(visible=True),gr.update(visible=False),gr.update(visible=False),gr.update(visible=True) else: return gr.update(visible=True), gr.update(visible=True),gr.update(visible=True),gr.update(visible=True),gr.update(visible=True),gr.update(visible=True),gr.update(visible=True),gr.update(visible=True),gr.update(visible=True) def display_image(image_file): image=Image.open(image_file) return image, os.path.basename(image_file) def display_image_in_file(image_checklist): global image_names, current_index image_names = load_image_checklist(image_checklist) image=show_image(current_index) return image,image_names[current_index] def update_file_based_on_chart_type(chart_type, all_file_path): with open(all_file_path, 'r', encoding='utf-8') as file: lines = file.readlines() filtered_lines=[] if chart_type == "전체": filtered_lines = lines elif chart_type == "일반 가로 막대형": filtered_lines = [line for line in lines if "_horizontal bar_standard" in line] elif chart_type=="누적 가로 막대형": filtered_lines = [line for line in lines if "_horizontal bar_accumulation" in line] elif chart_type=="100% 기준 누적 가로 막대형": filtered_lines = [line for line in lines if "_horizontal bar_100per accumulation" in line] elif chart_type=="일반 세로 막대형": filtered_lines = [line for line in lines if "_vertical bar_standard" in line] elif chart_type=="누적 세로 막대형": filtered_lines = [line for line in lines if "_vertical bar_accumulation" in line] elif chart_type=="100% 기준 누적 세로 막대형": filtered_lines = [line for line in lines if "_vertical bar_100per accumulation" in line] elif chart_type=="선형": filtered_lines = [line for line in lines if "_line_standard" in line] elif chart_type=="원형": filtered_lines = [line for line in lines if "_pie_standard" in line] elif chart_type=="기타 방사형": filtered_lines = [line for line in lines if "_etc_radial" in line] elif chart_type=="기타 혼합형": filtered_lines = [line for line in lines if "_etc_mix" in line] # 새로운 파일에 기록 new_file_path = "./filtered_chart_images.txt" with open(new_file_path, 'w', encoding='utf-8') as file: file.writelines(filtered_lines) return new_file_path def handle_chart_type_change(chart_type,all_file_path): new_file_path = update_file_based_on_chart_type(chart_type, all_file_path) global image_names, current_index image_names = load_image_checklist(new_file_path) current_index=0 image=show_image(current_index) return image,image_names[current_index] with gr.Blocks() as iface: mode=gr.State("image_upload") with gr.Row(): with gr.Column(): #mode_label=gr.Text("이미지 업로드가 선택되었습니다.") upload_option = gr.Radio(choices=["이미지 업로드", "파일 업로드"], value="이미지 업로드", label="업로드 옵션") #with gr.Row(): #image_button = gr.Button("이미지 업로드") #file_button = gr.Button("파일 업로드") # 이미지와 파일 업로드 컴포넌트 (초기에는 숨김 상태) # global image_uploader,file_uploader image_uploader= gr.File(file_count="single",file_types=["image"],visible=True) file_uploader= gr.File(file_count="single", file_types=[".txt"], visible=False) file_upload_option=gr.Radio(choices=["low score 차트","high score 차트"],label="파일 업로드 옵션",visible=False) chart_type = gr.Dropdown(["일반 가로 막대형","누적 가로 막대형","100% 기준 누적 가로 막대형", "일반 세로 막대형","누적 세로 막대형","100% 기준 누적 세로 막대형","선형", "원형", "기타 방사형", "기타 혼합형", "전체"], label="Chart Type", value="all") model_type=gr.Dropdown(["ko_deplot","aihub_deplot","unichart","all"],label="model") image_displayer=gr.Image(visible=True) with gr.Row(): pre_button=gr.Button("이전",interactive="False") next_button=gr.Button("다음") image_name=gr.Text("이미지 이름",visible=False) #image_button.click(interface_selector, inputs=gr.State("이미지 업로드"), outputs=[image_uploader,file_uploader,mode,mode_label,image_name]) #file_button.click(interface_selector, inputs=gr.State("파일 업로드"), outputs=[image_uploader, file_uploader,mode,mode_label,image_name]) inference_button=gr.Button("추론") with gr.Column(): ko_deplot_generated_table=gr.DataFrame(visible=False,label="ko-deplot 추론 결과") aihub_deplot_generated_table=gr.DataFrame(visible=False,label="aihub-deplot 추론 결과") unichart_generated_table=gr.DataFrame(visible=False,label="unichart 추론 결과") with gr.Column(): ko_deplot_label_table=gr.DataFrame(visible=False,label="ko-deplot 정답테이블") aihub_deplot_label_table=gr.DataFrame(visible=False,label="aihub-deplot 정답테이블") unichart_label_table=gr.DataFrame(visible=False,label="unichart 정답테이블") with gr.Column(): ko_deplot_score_table=gr.DataFrame(visible=False,label="ko_deplot 점수") aihub_deplot_score_table=gr.DataFrame(visible=False,label="aihub_deplot 점수") unichart_score_table=gr.DataFrame(visible=False,label="unichart 점수") model_type.change( update_results, inputs=[model_type], outputs=[ko_deplot_generated_table,ko_deplot_score_table,aihub_deplot_generated_table,aihub_deplot_score_table,unichart_generated_table,unichart_score_table,ko_deplot_label_table,aihub_deplot_label_table,unichart_label_table] ) upload_option.change( interface_selector, inputs=[upload_option], outputs=[image_uploader, file_uploader, mode, image_name,file_upload_option] ) file_upload_option.change( file_selector, inputs=[file_upload_option], outputs=[file_uploader] ) chart_type.change(handle_chart_type_change, inputs=[chart_type,file_uploader],outputs=[image_displayer,image_name]) image_uploader.upload(display_image,inputs=[image_uploader],outputs=[image_displayer,image_name]) file_uploader.change(display_image_in_file,inputs=[file_uploader],outputs=[image_displayer,image_name]) pre_button.click(previous_image, outputs=[image_displayer,image_name,pre_button,next_button]) next_button.click(next_image, outputs=[image_displayer,image_name,pre_button,next_button]) inference_button.click(inference,inputs=[upload_option,image_uploader,file_uploader],outputs=[ko_deplot_generated_table, aihub_deplot_generated_table, unichart_generated_table, ko_deplot_label_table, aihub_deplot_label_table, unichart_label_table, ko_deplot_score_table, aihub_deplot_score_table,unichart_score_table]) if __name__ == "__main__": print("Launching Gradio interface...") sys.stdout.flush() # stdout 버퍼를 비웁니다. iface.launch(share=True) time.sleep(2) # Gradio URL이 출력될 때까지 잠시 기다립니다. sys.stdout.flush() # 다시 stdout 버퍼를 비웁니다. # Gradio가 제공하는 URLs을 파일에 기록합니다. with open("gradio_url.log", "w") as f: print(iface.local_url, file=f) print(iface.share_url, file=f)