File size: 4,957 Bytes
9708f2a
 
 
 
 
 
387f307
9708f2a
fd2d856
9708f2a
f0cd44d
53b1dd3
f63f886
9708f2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
911e021
9708f2a
 
 
 
 
 
 
 
 
 
d154644
387f307
53b1dd3
9708f2a
 
2459c07
892ebe9
9708f2a
 
 
544f61e
fd2d856
9708f2a
d2e07cf
b8d4ae6
f0cd44d
544f61e
f0cd44d
 
9708f2a
f0cd44d
9708f2a
b8d4ae6
9708f2a
 
f0cd44d
544f61e
 
f0cd44d
 
 
 
d2e07cf
9708f2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2459c07
9708f2a
 
 
 
 
8d85171
9708f2a
 
 
 
 
 
 
 
53b1dd3
9708f2a
 
53b1dd3
9708f2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os
import chainlit as cl
from dotenv import load_dotenv
from operator import itemgetter
from langchain_huggingface import HuggingFaceEndpoint
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain.document_loaders import PyMuPDFLoader
from langchain_core.prompts import PromptTemplate
from langchain_community.embeddings.openai import OpenAIEmbeddings
from langchain.schema.runnable.config import RunnableConfig
from langchain_community.vectorstores import Qdrant


# GLOBAL SCOPE - ENTIRE APPLICATION HAS ACCESS TO VALUES SET IN THIS SCOPE #
# ---- ENV VARIABLES ---- # 
"""
This function will load our environment file (.env) if it is present.

NOTE: Make sure that .env is in your .gitignore file - it is by default, but please ensure it remains there.
"""
load_dotenv()

"""
We will load our environment variables here.
"""
HF_LLM_ENDPOINT = os.environ["HF_LLM_ENDPOINT"]
HF_EMBED_ENDPOINT = os.environ["HF_EMBED_ENDPOINT"]
HF_TOKEN = os.environ["HF_TOKEN"]
OPENAPI_KEY = os.environ["OPENAI_API_KEY"]

# ---- GLOBAL DECLARATIONS ---- #

# -- RETRIEVAL -- #
"""
1. Load Documents from Text File
2. Split Documents into Chunks
3. Load HuggingFace Embeddings (remember to use the URL we set above)
4. Index Files if they do not exist, otherwise load the vectorstore
"""
#Load the Pdf Documents from airbnb-10k    
documents = PyMuPDFLoader("data/airbnb-10k.pdf").load()

### 2. CREATE TEXT SPLITTER AND SPLIT DOCUMENTS
text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=1000,
    chunk_overlap=0
)
split_documents = text_splitter.split_documents(documents)

### 3. LOAD open ai EMBEDDINGS
embeddings = OpenAIEmbeddings(OPENAPI_API_KEY=OPENAPI_KEY,model="text-embedding-ada-002")

#Initialize the Vector Store
if os.path.exists("./vectorstore"):
    vectorstore = Qdrant.from_existing_collection(
        embeddings = embeddings,
        path = "./vectorstore", 
        collection_name = "airbnb-10k",
    )
    hf_retriever = vectorstore.as_retriever()
else:
    os.makedirs("./vectorstore", exist_ok=True)
    ### 4. INDEX FILES
    ### NOTE: REMEMBER TO BATCH THE DOCUMENTS WITH MAXIMUM BATCH SIZE = 32
    vectorstore = Qdrant.from_documents(
        split_documents,
        embeddings,
        path= "./vectorstore",
        collection_name="airbnb-10k",
    )
    hf_retriever = vectorstore.as_retriever()
    
# -- AUGMENTED -- #
"""
1. Define a String Template
2. Create a Prompt Template from the String Template
"""
### 1. DEFINE STRING TEMPLATE
RAG_PROMPT_TEMPLATE = """\
<|start_header_id|>system<|end_header_id|>
You are a helpful assistant. You answer user questions based on provided context. If you can't answer the question with the provided context, say you don't know.<|eot_id|>

<|start_header_id|>user<|end_header_id|>
User Query:
{query}

Context:
{context}<|eot_id|>

<|start_header_id|>assistant<|end_header_id|>
"""

### 2. CREATE PROMPT TEMPLATE
rag_prompt = PromptTemplate.from_template(RAG_PROMPT_TEMPLATE)

# -- GENERATION -- #
"""
1. Create a HuggingFaceEndpoint for the LLM
"""
### 1. CREATE HUGGINGFACE ENDPOINT FOR LLM
hf_llm = HuggingFaceEndpoint(
    endpoint_url=HF_LLM_ENDPOINT,
    max_new_tokens=512,
    top_k=10,
    top_p=0.95,
    typical_p=0.95,
    temperature=0.01,
    repetition_penalty=1.03,
    streaming=True,
    huggingfacehub_api_token=os.environ["HF_TOKEN"]
)

@cl.author_rename
def rename(original_author: str):
    """
    This function can be used to rename the 'author' of a message. 

    In this case, we're overriding the 'Assistant' author to be 'AirBnb Stock Analyzer'.
    """
    rename_dict = {
        "Assistant" : "AirBnB Stock Analyzer"
    }
    return rename_dict.get(original_author, original_author)

@cl.on_chat_start
async def start_chat():
    """
    This function will be called at the start of every user session. 

    We will build our LCEL RAG chain here, and store it in the user session. 

    The user session is a dictionary that is unique to each user session, and is stored in the memory of the server.
    """

    ### BUILD LCEL RAG CHAIN THAT ONLY RETURNS TEXT
    lcel_rag_chain = {"context": itemgetter("query") | hf_retriever, "query": itemgetter("query")}| rag_prompt | hf_llm

    cl.user_session.set("lcel_rag_chain", lcel_rag_chain)

@cl.on_message  
async def main(message: cl.Message):
    """
    This function will be called every time a message is recieved from a session.

    We will use the LCEL RAG chain to generate a response to the user query.

    The LCEL RAG chain is stored in the user session, and is unique to each user session - this is why we can access it here.
    """
    lcel_rag_chain = cl.user_session.get("lcel_rag_chain")

    msg = cl.Message(content="")

    async for chunk in lcel_rag_chain.astream(
        {"query": message.content},
        config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]),
    ):
        await msg.stream_token(chunk)

    await msg.send()