Spaces:
Runtime error
Runtime error
import os | |
import chainlit as cl | |
from dotenv import load_dotenv | |
from operator import itemgetter | |
from langchain_huggingface import HuggingFaceEndpoint | |
from langchain_text_splitters import RecursiveCharacterTextSplitter | |
from langchain.document_loaders import PyMuPDFLoader | |
from langchain_huggingface import HuggingFaceEndpointEmbeddings | |
from langchain_core.prompts import PromptTemplate | |
from langchain_openai.embeddings import OpenAI | |
from langchain.schema.runnable.config import RunnableConfig | |
from langchain_community.vectorstores import Qdrant | |
# GLOBAL SCOPE - ENTIRE APPLICATION HAS ACCESS TO VALUES SET IN THIS SCOPE # | |
# ---- ENV VARIABLES ---- # | |
""" | |
This function will load our environment file (.env) if it is present. | |
NOTE: Make sure that .env is in your .gitignore file - it is by default, but please ensure it remains there. | |
""" | |
load_dotenv() | |
""" | |
We will load our environment variables here. | |
""" | |
HF_LLM_ENDPOINT = os.environ["HF_LLM_ENDPOINT"] | |
HF_EMBED_ENDPOINT = os.environ["HF_EMBED_ENDPOINT"] | |
HF_TOKEN = os.environ["HF_TOKEN"] | |
OPENAPI_KEY = os.environ["OPENAI_API_KEY"] | |
# ---- GLOBAL DECLARATIONS ---- # | |
# -- RETRIEVAL -- # | |
""" | |
1. Load Documents from Text File | |
2. Split Documents into Chunks | |
3. Load HuggingFace Embeddings (remember to use the URL we set above) | |
4. Index Files if they do not exist, otherwise load the vectorstore | |
""" | |
#Load the Pdf Documents from airbnb-10k | |
documents = PyMuPDFLoader("data/airbnb-10k.pdf").load() | |
### 2. CREATE TEXT SPLITTER AND SPLIT DOCUMENTS | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=1000, | |
chunk_overlap=0 | |
) | |
split_documents = text_splitter.split_documents(documents) | |
### 3. LOAD open ai EMBEDDINGS | |
embeddings = OpenAI(OPENAPI_API_KEY=OPENAPI_KEY,model="text-embedding-ada-002") | |
#Initialize the Vector Store | |
if os.path.exists("./vectorstore"): | |
vectorstore = Qdrant.from_existing_collection( | |
embeddings = embeddings, | |
path = "./vectorstore", | |
collection_name = "airbnb-10k", | |
) | |
hf_retriever = vectorstore.as_retriever() | |
else: | |
os.makedirs("./vectorstore", exist_ok=True) | |
### 4. INDEX FILES | |
### NOTE: REMEMBER TO BATCH THE DOCUMENTS WITH MAXIMUM BATCH SIZE = 32 | |
vectorstore = Qdrant.from_documents( | |
split_documents, | |
embeddings, | |
path= "./vectorstore", | |
collection_name="airbnb-10k", | |
) | |
hf_retriever = vectorstore.as_retriever() | |
# -- AUGMENTED -- # | |
""" | |
1. Define a String Template | |
2. Create a Prompt Template from the String Template | |
""" | |
### 1. DEFINE STRING TEMPLATE | |
RAG_PROMPT_TEMPLATE = """\ | |
<|start_header_id|>system<|end_header_id|> | |
You are a helpful assistant. You answer user questions based on provided context. If you can't answer the question with the provided context, say you don't know.<|eot_id|> | |
<|start_header_id|>user<|end_header_id|> | |
User Query: | |
{query} | |
Context: | |
{context}<|eot_id|> | |
<|start_header_id|>assistant<|end_header_id|> | |
""" | |
### 2. CREATE PROMPT TEMPLATE | |
rag_prompt = PromptTemplate.from_template(RAG_PROMPT_TEMPLATE) | |
# -- GENERATION -- # | |
""" | |
1. Create a HuggingFaceEndpoint for the LLM | |
""" | |
### 1. CREATE HUGGINGFACE ENDPOINT FOR LLM | |
hf_llm = HuggingFaceEndpoint( | |
endpoint_url=HF_LLM_ENDPOINT, | |
max_new_tokens=512, | |
top_k=10, | |
top_p=0.95, | |
typical_p=0.95, | |
temperature=0.01, | |
repetition_penalty=1.03, | |
streaming=True, | |
huggingfacehub_api_token=os.environ["HF_TOKEN"] | |
) | |
def rename(original_author: str): | |
""" | |
This function can be used to rename the 'author' of a message. | |
In this case, we're overriding the 'Assistant' author to be 'AirBnb Stock Analyzer'. | |
""" | |
rename_dict = { | |
"Assistant" : "AirBnB Stock Analyzer" | |
} | |
return rename_dict.get(original_author, original_author) | |
async def start_chat(): | |
""" | |
This function will be called at the start of every user session. | |
We will build our LCEL RAG chain here, and store it in the user session. | |
The user session is a dictionary that is unique to each user session, and is stored in the memory of the server. | |
""" | |
### BUILD LCEL RAG CHAIN THAT ONLY RETURNS TEXT | |
lcel_rag_chain = {"context": itemgetter("query") | hf_retriever, "query": itemgetter("query")}| rag_prompt | hf_llm | |
cl.user_session.set("lcel_rag_chain", lcel_rag_chain) | |
async def main(message: cl.Message): | |
""" | |
This function will be called every time a message is recieved from a session. | |
We will use the LCEL RAG chain to generate a response to the user query. | |
The LCEL RAG chain is stored in the user session, and is unique to each user session - this is why we can access it here. | |
""" | |
lcel_rag_chain = cl.user_session.get("lcel_rag_chain") | |
msg = cl.Message(content="") | |
async for chunk in lcel_rag_chain.astream( | |
{"query": message.content}, | |
config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]), | |
): | |
await msg.stream_token(chunk) | |
await msg.send() |