import os import chainlit as cl from dotenv import load_dotenv from operator import itemgetter from langchain_huggingface import HuggingFaceEndpoint from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain.document_loaders import PyMuPDFLoader from langchain_core.prompts import PromptTemplate from langchain_community.embeddings.openai import OpenAIEmbeddings from langchain.schema.runnable.config import RunnableConfig from langchain_community.vectorstores import Qdrant # GLOBAL SCOPE - ENTIRE APPLICATION HAS ACCESS TO VALUES SET IN THIS SCOPE # # ---- ENV VARIABLES ---- # """ This function will load our environment file (.env) if it is present. NOTE: Make sure that .env is in your .gitignore file - it is by default, but please ensure it remains there. """ load_dotenv() """ We will load our environment variables here. """ HF_LLM_ENDPOINT = os.environ["HF_LLM_ENDPOINT"] HF_EMBED_ENDPOINT = os.environ["HF_EMBED_ENDPOINT"] HF_TOKEN = os.environ["HF_TOKEN"] OPENAPI_KEY = os.environ["OPENAI_API_KEY"] # ---- GLOBAL DECLARATIONS ---- # # -- RETRIEVAL -- # """ 1. Load Documents from Text File 2. Split Documents into Chunks 3. Load HuggingFace Embeddings (remember to use the URL we set above) 4. Index Files if they do not exist, otherwise load the vectorstore """ #Load the Pdf Documents from airbnb-10k documents = PyMuPDFLoader("data/airbnb-10k.pdf").load() ### 2. CREATE TEXT SPLITTER AND SPLIT DOCUMENTS text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=0 ) split_documents = text_splitter.split_documents(documents) ### 3. LOAD open ai EMBEDDINGS embeddings = OpenAIEmbeddings(OPENAPI_API_KEY=OPENAPI_KEY,model="text-embedding-ada-002") #Initialize the Vector Store if os.path.exists("./vectorstore"): vectorstore = Qdrant.from_existing_collection( embeddings = embeddings, path = "./vectorstore", collection_name = "airbnb-10k", ) hf_retriever = vectorstore.as_retriever() else: os.makedirs("./vectorstore", exist_ok=True) ### 4. INDEX FILES ### NOTE: REMEMBER TO BATCH THE DOCUMENTS WITH MAXIMUM BATCH SIZE = 32 vectorstore = Qdrant.from_documents( split_documents, embeddings, path= "./vectorstore", collection_name="airbnb-10k", ) hf_retriever = vectorstore.as_retriever() # -- AUGMENTED -- # """ 1. Define a String Template 2. Create a Prompt Template from the String Template """ ### 1. DEFINE STRING TEMPLATE RAG_PROMPT_TEMPLATE = """\ <|start_header_id|>system<|end_header_id|> You are a helpful assistant. You answer user questions based on provided context. If you can't answer the question with the provided context, say you don't know.<|eot_id|> <|start_header_id|>user<|end_header_id|> User Query: {query} Context: {context}<|eot_id|> <|start_header_id|>assistant<|end_header_id|> """ ### 2. CREATE PROMPT TEMPLATE rag_prompt = PromptTemplate.from_template(RAG_PROMPT_TEMPLATE) # -- GENERATION -- # """ 1. Create a HuggingFaceEndpoint for the LLM """ ### 1. CREATE HUGGINGFACE ENDPOINT FOR LLM hf_llm = HuggingFaceEndpoint( endpoint_url=HF_LLM_ENDPOINT, max_new_tokens=512, top_k=10, top_p=0.95, typical_p=0.95, temperature=0.01, repetition_penalty=1.03, streaming=True, huggingfacehub_api_token=os.environ["HF_TOKEN"] ) @cl.author_rename def rename(original_author: str): """ This function can be used to rename the 'author' of a message. In this case, we're overriding the 'Assistant' author to be 'AirBnb Stock Analyzer'. """ rename_dict = { "Assistant" : "AirBnB Stock Analyzer" } return rename_dict.get(original_author, original_author) @cl.on_chat_start async def start_chat(): """ This function will be called at the start of every user session. We will build our LCEL RAG chain here, and store it in the user session. The user session is a dictionary that is unique to each user session, and is stored in the memory of the server. """ ### BUILD LCEL RAG CHAIN THAT ONLY RETURNS TEXT lcel_rag_chain = {"context": itemgetter("query") | hf_retriever, "query": itemgetter("query")}| rag_prompt | hf_llm cl.user_session.set("lcel_rag_chain", lcel_rag_chain) @cl.on_message async def main(message: cl.Message): """ This function will be called every time a message is recieved from a session. We will use the LCEL RAG chain to generate a response to the user query. The LCEL RAG chain is stored in the user session, and is unique to each user session - this is why we can access it here. """ lcel_rag_chain = cl.user_session.get("lcel_rag_chain") msg = cl.Message(content="") async for chunk in lcel_rag_chain.astream( {"query": message.content}, config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]), ): await msg.stream_token(chunk) await msg.send()