Spaces:
Running
Running
from datetime import datetime | |
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader | |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
from llama_parse import LlamaParse | |
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI | |
import os | |
from dotenv import load_dotenv | |
import gradio as gr | |
import markdowm as md | |
import base64 | |
# Load environment variables | |
load_dotenv() | |
llm_models = [ | |
"mistralai/Mixtral-8x7B-Instruct-v0.1", | |
"meta-llama/Meta-Llama-3-8B-Instruct", | |
"mistralai/Mistral-7B-Instruct-v0.2", | |
"tiiuae/falcon-7b-instruct", | |
# "mistralai/Mixtral-8x22B-Instruct-v0.1", ## 281GB>10GB | |
# "NousResearch/Yarn-Mistral-7b-64k", ## 14GB>10GB | |
# "impira/layoutlm-document-qa", ## ERR | |
# "Qwen/Qwen1.5-7B", ## 15GB | |
# "Qwen/Qwen2.5-3B", ## high response time | |
# "google/gemma-2-2b-jpn-it", ## high response time | |
# "impira/layoutlm-invoices", ## bad req | |
# "google/pix2struct-docvqa-large", ## bad req | |
# "google/gemma-7b-it", ## 17GB > 10GB | |
# "google/gemma-2b-it", ## high response time | |
# "HuggingFaceH4/zephyr-7b-beta", ## high response time | |
# "HuggingFaceH4/zephyr-7b-gemma-v0.1", ## bad req | |
# "microsoft/phi-2", ## high response time | |
# "TinyLlama/TinyLlama-1.1B-Chat-v1.0", ## high response time | |
# "mosaicml/mpt-7b-instruct", ## 13GB>10GB | |
# "google/flan-t5-xxl" ## high respons time | |
# "NousResearch/Yarn-Mistral-7b-128k", ## 14GB>10GB | |
# "Qwen/Qwen2.5-7B-Instruct", ## 15GB>10GB | |
] | |
embed_models = [ | |
"BAAI/bge-small-en-v1.5", # 33.4M | |
"NeuML/pubmedbert-base-embeddings", | |
"BAAI/llm-embedder", # 109M | |
"BAAI/bge-large-en" # 335M | |
] | |
# Global variable for selected model | |
selected_llm_model_name = llm_models[0] # Default to the first model in the list | |
selected_embed_model_name = embed_models[0] # Default to the first model in the list | |
vector_index = None | |
# Initialize the parser | |
parser = LlamaParse(api_key=os.getenv("LLAMA_INDEX_API"), result_type='markdown') | |
# Define file extractor with various common extensions | |
file_extractor = { | |
'.pdf': parser, # PDF documents | |
'.docx': parser, # Microsoft Word documents | |
'.doc': parser, # Older Microsoft Word documents | |
'.txt': parser, # Plain text files | |
'.csv': parser, # Comma-separated values files | |
'.xlsx': parser, # Microsoft Excel files (requires additional processing for tables) | |
'.pptx': parser, # Microsoft PowerPoint files (for slides) | |
'.html': parser, # HTML files (web pages) | |
# '.rtf': parser, # Rich Text Format files | |
# '.odt': parser, # OpenDocument Text files | |
# '.epub': parser, # ePub files (e-books) | |
# Image files for OCR processing | |
'.jpg': parser, # JPEG images | |
'.jpeg': parser, # JPEG images | |
'.png': parser, # PNG images | |
# '.bmp': parser, # Bitmap images | |
# '.tiff': parser, # TIFF images | |
# '.tif': parser, # TIFF images (alternative extension) | |
# '.gif': parser, # GIF images (can contain text) | |
# Scanned documents in image formats | |
'.webp': parser, # WebP images | |
'.svg': parser, # SVG files (vector format, may contain embedded text) | |
} | |
# File processing function | |
def load_files(file_path: str, embed_model_name: str): | |
try: | |
global vector_index | |
document = SimpleDirectoryReader(input_files=[file_path], file_extractor=file_extractor).load_data() | |
embed_model = HuggingFaceEmbedding(model_name=embed_model_name) | |
vector_index = VectorStoreIndex.from_documents(document, embed_model=embed_model) | |
print(f"Parsing done for {file_path}") | |
filename = os.path.basename(file_path) | |
return f"Ready to give response on {filename}" | |
except Exception as e: | |
return f"An error occurred: {e}" | |
# Function to handle the selected model from dropdown | |
def set_llm_model(selected_model): | |
global selected_llm_model_name | |
selected_llm_model_name = selected_model # Update the global variable | |
# print(f"Model selected: {selected_model_name}") | |
# return f"Model set to: {selected_model_name}" | |
# Respond function that uses the globally set selected model | |
def respond(message, history): | |
try: | |
# Initialize the LLM with the selected model | |
llm = HuggingFaceInferenceAPI( | |
model_name=selected_llm_model_name, | |
contextWindow=8192, # Context window size (typically max length of the model) | |
maxTokens=1024, # Tokens per response generation (512-1024 works well for detailed answers) | |
temperature=0.3, # Lower temperature for more focused answers (0.2-0.4 for factual info) | |
topP=0.9, # Top-p sampling to control diversity while retaining quality | |
frequencyPenalty=0.5, # Slight penalty to avoid repetition | |
presencePenalty=0.5, # Encourages exploration without digressing too much | |
token=os.getenv("TOKEN") | |
) | |
# Set up the query engine with the selected LLM | |
query_engine = vector_index.as_query_engine(llm=llm) | |
bot_message = query_engine.query(message) | |
print(f"\n{datetime.now()}:{selected_llm_model_name}:: {message} --> {str(bot_message)}\n") | |
return f"{selected_llm_model_name}:\n{str(bot_message)}" | |
except Exception as e: | |
if str(e) == "'NoneType' object has no attribute 'as_query_engine'": | |
return "Please upload a file." | |
return f"An error occurred: {e}" | |
def encode_image(image_path): | |
with open(image_path, "rb") as image_file: | |
return base64.b64encode(image_file.read()).decode('utf-8') | |
# Encode the images | |
github_logo_encoded = encode_image("Images/github-logo.png") | |
linkedin_logo_encoded = encode_image("Images/linkedin-logo.png") | |
website_logo_encoded = encode_image("Images/ai-logo.png") | |
# UI Setup | |
with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Roboto Mono")]), css='footer {visibility: hidden}') as demo: | |
gr.Markdown("# DocBot📄🤖") | |
with gr.Tabs(): | |
with gr.TabItem("Intro"): | |
gr.Markdown(md.description) | |
with gr.TabItem("DocBot"): | |
with gr.Accordion("=== IMPORTANT: READ ME FIRST ===", open=False): | |
guid = gr.Markdown(md.guide) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
file_input = gr.File(file_count="single", type='filepath', label="Step-1: Upload document") | |
# gr.Markdown("Dont know what to select check out in Intro tab") | |
embed_model_dropdown = gr.Dropdown(embed_models, label="Step-2: Select Embedding", interactive=True) | |
with gr.Row(): | |
btn = gr.Button("Submit", variant='primary') | |
clear = gr.ClearButton() | |
output = gr.Text(label='Vector Index') | |
llm_model_dropdown = gr.Dropdown(llm_models, label="Step-3: Select LLM", interactive=True) | |
with gr.Column(scale=3): | |
gr.ChatInterface( | |
fn=respond, | |
chatbot=gr.Chatbot(height=500), | |
theme = "soft", | |
show_progress='full', | |
# cache_mode='lazy', | |
textbox=gr.Textbox(placeholder="Step-4: Ask me questions on the uploaded document!", container=False) | |
) | |
gr.HTML(md.footer.format(github_logo_encoded, linkedin_logo_encoded, website_logo_encoded)) | |
# Set up Gradio interactions | |
llm_model_dropdown.change(fn=set_llm_model, inputs=llm_model_dropdown) | |
btn.click(fn=load_files, inputs=[file_input, embed_model_dropdown], outputs=output) | |
clear.click(lambda: [None] * 3, outputs=[file_input, embed_model_dropdown, output]) | |
# Launch the demo with a public link option | |
if __name__ == "__main__": | |
demo.launch() |