File size: 5,186 Bytes
58cb744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import together

# set your API key
together.api_key = "c9909567768fbf1a69fbd94c758e432f0a05a6755c32dced992ac6640a8cfd79"

# list available models and descriptons
models = together.Models.list()

together.Models.start("togethercomputer/llama-2-7b-chat")

from langchain.llms import Together


llm = Together(
    model="togethercomputer/llama-2-7b-chat",
    temperature=0.7,
    max_tokens=128,
    top_k=1,
    together_api_key="c9909567768fbf1a69fbd94c758e432f0a05a6755c32dced992ac6640a8cfd79"
)

from langchain.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter

from langchain.chains import RetrievalQA
from langchain.document_loaders import TextLoader
from langchain.document_loaders import PyPDFLoader
from langchain.document_loaders import DirectoryLoader

loader = PyPDFLoader('/Production-Table - Sheet1 (2).pdf')

documents = loader.load()
#splitting the text into
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
texts = text_splitter.split_documents(documents)
from langchain.embeddings import HuggingFaceBgeEmbeddings

model_name = "BAAI/bge-base-en"
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity

model_norm = HuggingFaceBgeEmbeddings(
    model_name=model_name,
    model_kwargs={'device': 'cuda'},
    encode_kwargs=encode_kwargs
)


# Embed and store the texts
# Supplying a persist_directory will store the embeddings on disk

persist_directory = 'db'

## Here is the nmew embeddings being used
embedding = model_norm

vectordb = Chroma.from_documents(documents=texts,
                                 embedding=embedding,
                                 persist_directory=persist_directory)

retriever = vectordb.as_retriever(search_kwargs={"k": 5})
## Default LLaMA-2 prompt style
B_INST, E_INST = "[INST]", "[/INST]"
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
DEFAULT_SYSTEM_PROMPT = """\
You are a helpful, respectful and honest assistant of a production company. You should honestly answer the user's query using the knowledge of the company's production documents uploaded.

If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."""

def get_prompt(instruction, new_system_prompt=DEFAULT_SYSTEM_PROMPT ):
    SYSTEM_PROMPT = B_SYS + new_system_prompt + E_SYS
    prompt_template =  B_INST + SYSTEM_PROMPT + instruction + E_INST
    return prompt_template

sys_prompt = """You are a helpful, respectful and honest assistant of a production company. You should honestly answer the user's query using the knowledge of the company's production documents uploaded.

If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."""

instruction = """CONTEXT:/n/n {context}/n

Question: {question}"""
get_prompt(instruction, sys_prompt)

from langchain.prompts import PromptTemplate
prompt_template = get_prompt(instruction, sys_prompt)

llama_prompt = PromptTemplate(
    template=prompt_template, input_variables=["context", "question"]
)
from langchain.schema import prompt
# create the chain to answer questions
qa_chain = RetrievalQA.from_chain_type(llm=llm,
                                       chain_type="stuff",
                                       retriever=retriever,
                                       chain_type_kwargs=chain_type_kwargs,
                                       return_source_documents=True)
## Cite sources

import textwrap

def wrap_text_preserve_newlines(text, width=110):
    # Split the input text into lines based on newline characters
    lines = text.split('\n')

    # Wrap each line individually
    wrapped_lines = [textwrap.fill(line, width=width) for line in lines]

    # Join the wrapped lines back together using newline characters
    wrapped_text = '\n'.join(wrapped_lines)

    return wrapped_text

def process_llm_response(llm_response):
    print(wrap_text_preserve_newlines(llm_response['result']))
    print('\n\nSources:')
    for source in llm_response["source_documents"]:
        print(source.metadata['source'])
import gradio as gr

with gr.Blocks() as demo:
    chatbot = gr.Chatbot()
    msg = gr.Textbox()
    clear = gr.Button("Clear")

    def user(user_message, history):
        return "", history + [[user_message, None]]

    def bot(history):
        print("Question: ", history[-1][0])
        #wrap_text_preserve_newlines(llm_response['result'])
        #bot_message = process_llm_response(qa_chain(history[-1][0]))
        bot_message = wrap_text_preserve_newlines((qa_chain(history[-1][0]))['result'])
        print("Response: ", bot_message)
        history[-1][1] = ""
        history[-1][1] += bot_message
        return history


    msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(bot, chatbot, chatbot)
    clear.click(lambda: None, None, chatbot, queue=False)

demo.queue()
demo.launch(debug = True)