fradinho commited on
Commit
9f12d03
·
1 Parent(s): ce711bd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -186
app.py CHANGED
@@ -6,6 +6,12 @@ from skimage.io import imshow, imsave
6
  import tensorflow
7
  import tensorflow as tf
8
  from tensorflow.keras import backend as K
 
 
 
 
 
 
9
 
10
  size = 1024
11
  pach_size = 256
@@ -351,20 +357,7 @@ def unet_2( n_classes=2, height=pach_size, width=pach_size, channels=3, metrics
351
 
352
  encode = encoder_unet(inputs)
353
  decode = decoder(encode.output, inputs)
354
- #print(type(decode.output))
355
- #print(decode.output.shape)
356
-
357
- #encode_2 = encoder(decode.output, inputs)
358
- #decode_2 = decoder(encode_2.output, inputs)
359
- #########outputs = decode.output
360
- #print(encode_2.output.shape)
361
- #u7 = UpSampling2D((2, 2))(encode_2.output)
362
- #u7 = Conv2D(32, (3, 3), activation='relu', padding='same')(u7)
363
- #u7 = UpSampling2D((2, 2))(u7)
364
- #u7 = Conv2D(64, (3, 3), activation='relu', padding='same')(u7)
365
- #u7 = UpSampling2D((2, 2))(u7)
366
- #u7 = Conv2D(128, (3, 3), activation='relu', padding='same')(u7)
367
- #u7 = UpSampling2D((2, 2))(u7)
368
  outputs = decode.output
369
  #outputs = Conv2D(n_classes, (1, 1), activation='softmax', padding='same', kernel_initializer='he_normal')(decode.output)
370
  #outputs = tf.reshape(encode_2.output[0], [None, 16, 16, 256])
@@ -385,183 +378,13 @@ def unet_2( n_classes=2, height=pach_size, width=pach_size, channels=3, metrics
385
 
386
  def unet_enssemble(n_classes=2, height=64, width=64, channels=3, metrics = ['accuracy']):
387
  x = Input((height, width, channels))
388
- #x = inputs
389
-
390
- #augmented = data_augmentation(x)
391
- #augmented_0 = data_augmentation_0(x)
392
- #augmented_1 = data_augmentation_1(x)
393
- #augmented_2 = data_augmentation_2(x)
394
- #augmented_3 = data_augmentation_3(x)
395
- #augmented_4 = data_augmentation_4(x)
396
- #augmented_5 = data_augmentation_5(x)
397
- #augmented = layers.GaussianNoise(0.1)(augmented)
398
-
399
- #out_x = concatenate([augmented, augmented_0], axis=0)
400
-
401
- #augmented = x
402
- #BACKBONE = 'resnet152'
403
- #BACKBONE = 'efficientnetb7'
404
- #model5 = sm.Linknet(BACKBONE, encoder_weights='imagenet', classes=n_classes, activation='softmax')
405
- #model10 = sm.Unet(BACKBONE,
406
- #pyramid_block_filters=32,
407
- # encoder_weights='imagenet', classes=n_classes, activation='softmax')
408
- #BACKBONE = 'vgg16'
409
- #model7 = sm.FPN(BACKBONE,
410
- #encoder_freeze = True,
411
- #pyramid_block_filters=16,
412
- # encoder_weights='imagenet', classes=n_classes, activation='softmax')
413
- #BACKBONE = 'inceptionresnetv2'
414
- #model8 = sm.FPN(BACKBONE, pyramid_block_filters=16, encoder_weights='imagenet', classes=n_classes, activation='softmax')
415
- #BACKBONE = 'resnext50'
416
- #BACKBONE = 'seresnet152'
417
- #decode_filt=(256, 128, 64, 32, 16)
418
- #BACKBONE = 'mobilenetv2'
419
- #model10 = sm.FPN(BACKBONE, pyramid_block_filters=256, encoder_weights='imagenet', classes=n_classes, activation='softmax')
420
- #model10_x1 = sm.Unet(BACKBONE, decoder_filters=decode_filt,
421
- # decoder_block_type='upsampling',
422
- #decoder_block_type='transpose',
423
- # encoder_weights='imagenet', classes=n_classes, activation='softmax')
424
- #model10_x2 = sm.Linknet(BACKBONE, encoder_weights='imagenet', classes=n_classes, activation='softmax')
425
- #BACKBONE = 'resnet18'
426
- #BACKBONE = 'resnext50'
427
- #BACKBONE = 'mobilenetv2'
428
- #BACKBONE = 'efficientnetb7'
429
- #model10 = sm.FPN(BACKBONE,
430
- #encoder_freeze = True,
431
- #pyramid_block_filters=16,
432
- # encoder_weights='imagenet',
433
- # classes=n_classes, activation='softmax')
434
- #BACKBONE = 'vgg16'
435
- #model7 = sm.FPN(BACKBONE,
436
- # pyramid_block_filters=512,
437
- # encoder_weights='imagenet', classes=n_classes, activation='softmax')
438
- #model9 = create_cct_model(n_classes=n_classes, height = height, width = width, channels = n_channels)
439
- #reshaped = tf.reshape(encoded_patches , [-1,256,256,64])
440
-
441
- #model7 = unet_2( n_classes=n_classes, height = height, width = width, channels = 3)
442
- model10 = unet_2( n_classes=n_classes, height = height, width = width, channels = 3)
443
- #model10_xx = unet_2( n_classes=n_classes, height = height, width = width, channels = 3)
444
- #model8 = unet_2( n_classes=n_classes,
445
- # height = height, width = width, channels = n_channels)(augmented)
446
- ###model8_x = unet_2( n_classes=n_classes,
447
- ### height = height, width = width, channels = n_channels)(x)
448
-
449
-
450
-
451
- #model1 = get_model(inputs=x, n_classes=n_classes, height = height, width = width, channels = n_channels)
452
- #model2 = DeeplabV3Plus(model_input=x, image_size=256, num_classes=n_classes)
453
- #model4 = unet_2(inputs=x, n_classes=n_classes, height = height, width = width, channels = n_channels)
454
- #model3 = swin_unet_2d_base(x, filter_num_begin, depth, stack_num_down, stack_num_up,
455
- # patch_size, num_heads, window_size, num_mlp,
456
- # shift_window=shift_window, name='swin_unet')
457
- #print(model1.output.shape, model2.output.shape)
458
- #model5.trainable = False
459
- #model6.trainable = False
460
-
461
- #out = model11(augmented)
462
- #out = Conv2D(3, (3, 3), activation=activation_funtion, padding='same')(out)
463
- #out = K.flatten(out)
464
- #out = K.reshape(out,(-1,256,256,1))
465
- #out = model11(x)
466
- #out = unet_2(inputs=augmented, n_classes=n_classes, height = height, width = width, channels = n_channels)
467
-
468
- #quantize_model_7 = tfmot.quantization.keras.quantize_model
469
- # q_aware stands for for quantization aware.
470
- #q_aware_model_7 = quantize_model(model7)
471
- #quantize_model_11 = tfmot.quantization.keras.quantize_model
472
- # q_aware stands for for quantization aware.
473
- #q_aware_model_11 = quantize_model(model11)
474
 
 
475
 
476
- out = model10(x)
477
- #out = layers.GaussianNoise(0.1+np.random.random()*0.4)(out)
478
- #out = layers.GaussianNoise(0.1)(out)
479
- #out = concatenate([q_aware_model_7(augmented), q_aware_model_11(augmented)], axis=3)
480
- #out = concatenate([model6(augmented), model8(augmented), model6(x), model8(x)], axis=3)
481
- #out = concatenate([model10_x1(augmented), model10_x1(x), model10_x1(augmented_0)], axis=3)
482
- #out_7 = concatenate([model11(augmented), model7(augmented)], axis=3)
483
-
484
- #out = concatenate([x, out], axis=3)
485
- #out = tf.keras.layers.AveragePooling2D(pool_size=(2, 2), strides=(1, 1), padding='same')(out)
486
- #out = Conv2D(3, (3, 3), activation=activation_funtion, padding='same')(out)
487
- #out = model7(out)
488
 
489
 
 
490
 
491
-
492
- #out = model10_x(attention_weights)
493
- #model11 = Conv2D(32, (3, 3), activation=activation_funtion, padding='same')(model11)
494
- #model7 = Conv2D(32, (3, 3), activation=activation_funtion, padding='same')(model7)
495
- #out = concatenate([model10_x(x), model10_x(augmented), model10_x(augmented_0)], axis=3)
496
- #out = concatenate([ model7(x), model11(x),
497
- # model7(augmented_0), model11(augmented_0),
498
- # model7(augmented_1), model11(augmented_1),
499
- # model7(augmented_2), model11(augmented_2),
500
- # model7(augmented_3), model11(augmented_3),
501
- # model7(augmented_4), model11(augmented_4),
502
- # model7(augmented_5), model11(augmented_5)],axis=3)
503
-
504
- #out = tf.keras.layers.PReLU()(out)
505
- #out = Conv2D(64, (3, 3), activation=activation_funtion, padding='same')(out)
506
- #out = BatchNormalization()(out)
507
- #out = Dropout(0.2)(out)
508
-
509
- #####out = hybrid_pool_layer((2,2))(out)
510
-
511
- #a = tf.keras.layers.AveragePooling2D(padding='same')(out)
512
- #a = Lambda(lambda xx : xx*alpha)(a)
513
- #m = tf.keras.layers.MaxPooling2D(padding='same')(out)
514
- #m = Lambda(lambda xx : xx*(1-alpha))(m)
515
- #out = tf.keras.layers.Add()([a,m])
516
- #out = tf.keras.layers.AveragePooling2D(pool_size=(2, 2), strides=(1, 1), padding='same')(out)
517
-
518
- #out = layers.add([model1.output, model2.output])
519
- #out = layers.multiply([model1.output, model2.output])
520
- ##out = layers.add([model, encode.output])
521
- ##out = layers.multiply([model, encode.output])
522
-
523
- #out = Conv2D(128, (3, 3), activation=activation_funtion, padding='same')(out)
524
- #out = BatchNormalization()(out)
525
- #out = Conv2D(64, (3, 3), activation=activation_funtion, padding='same')(out)
526
- #out = SpikingActivation("relu")(out)
527
- #out = BatchNormalization()(out)
528
- #out = Dropout(0.2)(out)
529
- #out = Conv2D(32, (3, 3), activation=activation_funtion, padding='same')(out)
530
- #out = BatchNormalization()(out)
531
- #out = Conv2D(64, (3, 3), activation=activation_funtion, padding='same')(out)
532
- #out = BatchNormalization()(out)
533
- #out = Dropout(0.2)(out)
534
- #out = tf.keras.layers.PReLU()(out)
535
- #out = Conv2D(64, (3, 3), activation=activation_funtion, padding='same')(out)
536
- #out = BatchNormalization()(out)
537
- #out = Dropout(0.2)(out)
538
- #out = tf.keras.layers.PReLU()(out)
539
-
540
- #out = concatenate([conv_out_jump, out], axis=3)
541
- #out = Conv2D(256, (3, 3), activation=activation_funtion, padding='same')(out)
542
- #out = BatchNormalization()(out)
543
- #out = Dropout(0.2)(out)
544
-
545
- #out = tf.keras.layers.AveragePooling2D(pool_size=(2, 2), strides=(1, 1), padding='same')(out)
546
- #out = UpSampling2D((2, 2))(out)
547
-
548
- #out_list = []
549
- #for i in range(1,23):
550
- # outputs1 = Conv2D(n_classes-i, (1, 1), activation='softmax')(out)
551
- # out_list.append(outputs1)
552
- #outputs2 = Conv2D(n_classes-1, (1, 1), activation='softmax')(out)
553
- #outputs3 = Conv2D(n_classes-2, (1, 1), activation='softmax')(out)
554
- #outputs4 = Conv2D(n_classes-3, (1, 1), activation='softmax')(out)
555
- #outputs5 = Conv2D(n_classes-4, (1, 1), activation='softmax')(out)
556
- #outputs6 = Conv2D(n_classes-5, (1, 1), activation='softmax')(out)
557
- #outputs7 = Conv2D(n_classes-6, (1, 1), activation='softmax')(out)
558
- #outputs8 = Conv2D(n_classes-7, (1, 1), activation='softmax')(out)
559
- #outputs9 = Conv2D(n_classes-8, (1, 1), activation='softmax')(out)
560
-
561
- #out_list = [outputs1, outputs2, outputs3, outputs4, outputs5, outputs6, outputs7, outputs8, outputs9]
562
- #outputs = Conv2D(n_classes, (1, 1), activation='softmax')(encode.output)
563
- #outputs = concatenate(out_list, axis=3)
564
- #outputs = tf.keras.layers.AveragePooling2D(pool_size=(2, 2), strides=(1, 1), padding='same')(outputs)
565
  outputs = Conv2D(n_classes, (1, 1), activation='softmax', padding='same')(out)
566
 
567
 
 
6
  import tensorflow
7
  import tensorflow as tf
8
  from tensorflow.keras import backend as K
9
+ from tensorflow.keras.models import Model
10
+ from tensorflow.keras.optimizers import Adam
11
+ from tensorflow.keras.metrics import MeanIoU
12
+ from tensorflow.keras.utils import normalize, to_categorical
13
+ from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D, concatenate, Conv2DTranspose, BatchNormalization, Dropout, Lambda
14
+ from tensorflow.keras import layers
15
 
16
  size = 1024
17
  pach_size = 256
 
357
 
358
  encode = encoder_unet(inputs)
359
  decode = decoder(encode.output, inputs)
360
+
 
 
 
 
 
 
 
 
 
 
 
 
 
361
  outputs = decode.output
362
  #outputs = Conv2D(n_classes, (1, 1), activation='softmax', padding='same', kernel_initializer='he_normal')(decode.output)
363
  #outputs = tf.reshape(encode_2.output[0], [None, 16, 16, 256])
 
378
 
379
  def unet_enssemble(n_classes=2, height=64, width=64, channels=3, metrics = ['accuracy']):
380
  x = Input((height, width, channels))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
381
 
382
+ model10 = unet_2( n_classes=n_classes, height = height, width = width, channels = 3)
383
 
 
 
 
 
 
 
 
 
 
 
 
 
384
 
385
 
386
+ out = model10(x)
387
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
388
  outputs = Conv2D(n_classes, (1, 1), activation='softmax', padding='same')(out)
389
 
390