File size: 1,853 Bytes
6fa69eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import sys  
sys.path.insert(1, './HuBERT-SER/')
import torch
import torch.nn.functional as F
import torchaudio
from transformers import AutoConfig, Wav2Vec2FeatureExtractor
from src.models import Wav2Vec2ForSpeechClassification, HubertForSpeechClassification
import gradio as gr

model_name_or_path = "SeaBenSea/hubert-large-turkish-speech-emotion-recognition"

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
config = AutoConfig.from_pretrained(model_name_or_path)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
sampling_rate = feature_extractor.sampling_rate

model = HubertForSpeechClassification.from_pretrained(model_name_or_path).to(device)

def speech_file_to_array_fn(path, sampling_rate):
    speech_array, _sampling_rate = torchaudio.load(path)
    resampler = torchaudio.transforms.Resample(_sampling_rate, sampling_rate)
    speech = resampler(speech_array).squeeze().numpy()
    return speech


def predict(path, sampling_rate):
    speech = speech_file_to_array_fn(path, sampling_rate)
    inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
    inputs = {key: inputs[key].to(device) for key in inputs}

    with torch.no_grad():
        logits = model(**inputs).logits

    scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
    outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in
               enumerate(scores)]
    return outputs

def classify_audio(audio):
    return predict(audio, sampling_rate)

iface = gr.Interface(
    fn=classify_audio,
    inputs=gr.Audio(sources="upload", type="filepath"),
    outputs=gr.JSON(),
    title="Speech Emotion Classification",
    description="Upload an audio file to classify the emotion expressed in the speech."
)

iface.launch()