Spaces:
Runtime error
Runtime error
File size: 20,374 Bytes
5c5f218 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Union
from datasets import load_dataset, load_metric
import numpy as np
import torch
import torchaudio
import transformers
from transformers import (
HfArgumentParser,
TrainingArguments,
EvalPrediction,
AutoConfig,
Wav2Vec2Processor,
Wav2Vec2FeatureExtractor,
is_apex_available,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
from src.models import Wav2Vec2ForSpeechClassification, HubertForSpeechClassification
from src.collator import DataCollatorCTCWithPadding
from src.trainer import CTCTrainer
logger = logging.getLogger(__name__)
MODEL_MODES = ["wav2vec", "hubert"]
POOLING_MODES = ["mean", "sum", "max"]
DELIMITERS = {"tab": "\t", "comma": ",", "pipe": "|"}
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
model_mode: str = field(
default="wav2vec",
metadata={
"help": "Specifies the base model and must be from the following: " + ", ".join(MODEL_MODES)
},
)
pooling_mode: str = field(
default="mean",
metadata={
"help": "Specifies the reduction to apply to the output of Wav2Vec2 model and must be from the following: " + ", ".join(
POOLING_MODES)
},
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
feature_extractor_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained feature_extractor name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
freeze_feature_extractor: Optional[bool] = field(
default=True, metadata={"help": "Whether to freeze the feature extractor layers of the model."}
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
"with private models)."
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `HfArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.
"""
train_file: Optional[str] = field(
default=None, metadata={"help": "The input training data file (a csv or JSON file)."}
)
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."},
)
test_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to test on (a csv or JSON file)."},
)
input_column: Optional[str] = field(
default="path",
metadata={"help": "The name of the column in the datasets containing the audio path."},
)
target_column: Optional[str] = field(
default="emotion",
metadata={"help": "The name of the column in the datasets containing the labels."},
)
delimiter: Optional[str] = field(
default="tab",
metadata={
"help": "Specifies the character delimiting individual cells in the CSV data and must be from the following: " + ", ".join(
DELIMITERS.keys())
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
"value if set."
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
},
)
min_duration_in_seconds: Optional[float] = field(
default=None,
metadata={"help": "Filters out examples less than specified. Defaults to no filtering."},
)
max_duration_in_seconds: Optional[float] = field(
default=None,
metadata={"help": "Filters out examples longer than specified. Defaults to no filtering."},
)
def __post_init__(self):
if self.train_file is None and self.validation_file is None:
raise ValueError("Need either a dataset name or a training/validation file.")
else:
extension = self.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
logger.info(f"last_checkpoint: {last_checkpoint}")
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
logger.info("Training/evaluation parameters %s", training_args)
# Set seed before initializing model.
set_seed(training_args.seed)
# Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed.
data_files = {"train": data_args.train_file, "validation": data_args.validation_file}
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
# when you use `do_predict` without specifying a GLUE benchmark task.
if training_args.do_predict:
if data_args.test_file is not None:
train_extension = data_args.train_file.split(".")[-1]
test_extension = data_args.test_file.split(".")[-1]
assert (
test_extension == train_extension
), "`test_file` should have the same extension (csv or json) as `train_file`."
data_files["test"] = data_args.test_file
else:
raise ValueError("Need a test file for `do_predict`.")
for key in data_files.keys():
logger.info(f"load a local file for {key}: {data_files[key]}")
if data_args.train_file.endswith(".csv"):
# Loading a dataset from local csv files
datasets = load_dataset(
"csv",
data_files=data_files,
delimiter=DELIMITERS.get(data_args.delimiter, "\t"),
cache_dir=model_args.cache_dir
)
else:
# Loading a dataset from local json files
datasets = load_dataset("json", data_files=data_files, cache_dir=model_args.cache_dir)
input_column_name = data_args.input_column
output_column_name = data_args.target_column
# Trying to have good defaults here, don't hesitate to tweak to your needs.
is_regression = datasets["train"].features[output_column_name].dtype in ["float32", "float64"]
if is_regression:
num_labels = 1
label_list = []
logger.info(f"*** A regression problem ***")
else:
# A useful fast method:
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique
label_list = datasets["train"].unique(output_column_name)
label_list.sort() # Let's sort it for determinism
num_labels = len(label_list)
logger.info(f"*** A classification problem with {num_labels} classes ***")
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels,
label2id={label: i for i, label in enumerate(label_list)},
id2label={i: label for i, label in enumerate(label_list)},
finetuning_task="wav2vec2_clf",
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
setattr(config, 'pooling_mode', model_args.pooling_mode)
# tokenizer = Wav2Vec2CTCTokenizer.from_pretrained(model_args.model_name_or_path)
# feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_args.model_name_or_path)
# processor = Wav2Vec2Processor.from_pretrained(
# model_args.processor_name if model_args.processor_name else model_args.model_name_or_path,
# cache_dir=model_args.cache_dir,
# revision=model_args.model_revision,
# use_auth_token=True if model_args.use_auth_token else None,
# )
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
target_sampling_rate = feature_extractor.sampling_rate
if model_args.model_mode == "wav2vec":
model = Wav2Vec2ForSpeechClassification.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
elif model_args.model_mode == "hubert":
model = HubertForSpeechClassification.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
else:
raise ValueError("--model_mode does not exist in predefined modes: " + ",".join(MODEL_MODES))
if model_args.freeze_feature_extractor:
model.freeze_feature_extractor()
# NOTE: Duration controller for the future `min_duration_in_seconds` `max_duration_in_seconds`
# data_args.min_duration_in_seconds, data_args.max_duration_in_seconds
def speech_file_to_array_fn(path):
speech_array, sampling_rate = torchaudio.load(path)
resampler = torchaudio.transforms.Resample(sampling_rate, target_sampling_rate)
speech = resampler(speech_array).squeeze().numpy()
return speech
def label_to_id(label, label_list):
if len(label_list) > 0:
return label_list.index(label) if label in label_list else -1
return label
def preprocess_function(examples):
speech_list = [speech_file_to_array_fn(path) for path in examples[input_column_name]]
target_list = [label_to_id(label, label_list) for label in examples[output_column_name]]
result = feature_extractor(speech_list, sampling_rate=target_sampling_rate)
result["labels"] = list(target_list)
return result
if training_args.do_train:
if "train" not in datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = datasets["train"]
if data_args.max_train_samples is not None:
train_dataset = train_dataset.select(range(data_args.max_train_samples))
train_dataset = train_dataset.map(
preprocess_function,
batched=True,
load_from_cache_file=not data_args.overwrite_cache
)
logger.info(f"Split sizes: {len(train_dataset)} train")
if training_args.do_eval:
if "validation" not in datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = datasets["validation"]
if data_args.max_eval_samples is not None:
eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
eval_dataset = eval_dataset.map(
preprocess_function,
batched=True,
load_from_cache_file=not data_args.overwrite_cache
)
logger.info(f"Split sizes: {len(eval_dataset)} validation")
if training_args.do_predict:
if "test" not in datasets:
raise ValueError("--do_predict requires a test dataset")
predict_dataset = datasets["test"]
if data_args.max_predict_samples is not None:
predict_dataset = predict_dataset.select(range(data_args.max_predict_samples))
predict_dataset = predict_dataset.map(
preprocess_function,
batched=True,
load_from_cache_file=not data_args.overwrite_cache
)
logger.info(f"Split sizes: {len(predict_dataset)} test.")
# Metric
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(p: EvalPrediction):
preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
preds = np.squeeze(preds) if is_regression else np.argmax(preds, axis=1)
if is_regression:
return {"mse": ((preds - p.label_ids) ** 2).mean().item()}
else:
return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()}
# Data collator
data_collator = DataCollatorCTCWithPadding(feature_extractor=feature_extractor, padding=True)
# Initialize our Trainer
trainer = CTCTrainer(
model=model,
data_collator=data_collator,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=feature_extractor,
)
# Training
if training_args.do_train:
if last_checkpoint is not None:
checkpoint = last_checkpoint
elif os.path.isdir(model_args.model_name_or_path):
checkpoint = model_args.model_name_or_path
else:
checkpoint = None
logger.info(f"*** Training from: {checkpoint} ***")
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model()
# save the feature_extractor and the tokenizer
if is_main_process(training_args.local_rank):
feature_extractor.save_pretrained(training_args.output_dir)
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
results = {}
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# Final test metrics
if training_args.do_predict:
logger.info("*** Test ***")
predict_dataset.remove_columns_(output_column_name)
predictions = trainer.predict(predict_dataset, metric_key_prefix="predict").predictions
predictions = np.squeeze(predictions) if is_regression else np.argmax(predictions, axis=1)
output_predict_file = os.path.join(training_args.output_dir, f"predict_results.txt")
if trainer.is_world_process_zero():
with open(output_predict_file, "w", encoding="utf-8") as writer:
logger.info(f"***** Predict results *****")
writer.write("index\tprediction\n")
for index, item in enumerate(predictions):
if is_regression:
writer.write(f"{index}\t{item:3.3f}\n")
else:
item = label_list[item]
writer.write(f"{index}\t{item}\n")
# NOTE: Pushing to hub for future
# training_args.push_to_hub
return results
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
|