Spaces:
Running
Running
import sys | |
sys.path.insert(1, './HuBERT-SER/') | |
import torch | |
import torch.nn.functional as F | |
import torchaudio | |
from transformers import AutoConfig, Wav2Vec2FeatureExtractor | |
from src.models import Wav2Vec2ForSpeechClassification, HubertForSpeechClassification | |
import gradio as gr | |
model_name_or_path = "SeaBenSea/hubert-large-turkish-speech-emotion-recognition" | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
config = AutoConfig.from_pretrained(model_name_or_path) | |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path) | |
sampling_rate = feature_extractor.sampling_rate | |
model = HubertForSpeechClassification.from_pretrained(model_name_or_path).to(device) | |
def speech_file_to_array_fn(path, sampling_rate): | |
speech_array, _sampling_rate = torchaudio.load(path) | |
resampler = torchaudio.transforms.Resample(_sampling_rate, sampling_rate) | |
speech = resampler(speech_array).squeeze().numpy() | |
return speech | |
def predict(path, sampling_rate): | |
speech = speech_file_to_array_fn(path, sampling_rate) | |
inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True) | |
inputs = {key: inputs[key].to(device) for key in inputs} | |
with torch.no_grad(): | |
logits = model(**inputs).logits | |
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] | |
outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in | |
enumerate(scores)] | |
return outputs | |
def classify_audio(audio): | |
return predict(audio, sampling_rate) | |
iface = gr.Interface( | |
fn=classify_audio, | |
inputs=gr.Audio(sources="upload", type="filepath"), | |
outputs=gr.JSON(), | |
title="Speech Emotion Classification", | |
description="Upload an audio file to classify the emotion expressed in the speech." | |
) | |
iface.launch() |