Spaces:
Running
on
Zero
Running
on
Zero
File size: 29,784 Bytes
203c3cd f028d50 203c3cd f028d50 203c3cd f028d50 203c3cd f028d50 203c3cd f028d50 203c3cd f028d50 203c3cd c14f353 203c3cd 5622434 203c3cd 5622434 203c3cd e33248e 203c3cd 5622434 203c3cd 5622434 203c3cd 5622434 203c3cd f028d50 5100e68 203c3cd 5100e68 f028d50 5100e68 f028d50 203c3cd f028d50 203c3cd e9cbae4 203c3cd 5100e68 203c3cd 5100e68 203c3cd 5100e68 203c3cd f028d50 5100e68 203c3cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 |
# A mirror to gradio launch stream
# By Xuan Phi Nguyen at DAMO Academy, Alibaba Group
"""
Load FasterLlama with original VLLM codebase,
require changing config names to LlamaForCausalLM
tensor_parallel must == 1
"""
import os
import numpy as np
import argparse
import torch
import gradio as gr
from typing import Any, Iterator
from typing import Iterator, List, Optional, Tuple
import filelock
import glob
import json
from gradio_client.documentation import document, set_documentation_group
from typing import List, Optional, Union, Dict, Tuple
from tqdm.auto import tqdm
from huggingface_hub import snapshot_download
DEBUG = True
if not DEBUG:
# vllm import
from vllm import LLM, SamplingParams
from transformers import PreTrainedTokenizer, PreTrainedTokenizerFast
from vllm.engine.arg_utils import EngineArgs
from vllm.engine.llm_engine import LLMEngine
from vllm.outputs import RequestOutput
from vllm.sampling_params import SamplingParams
from vllm.utils import Counter
from vllm.sequence import (Sequence, SequenceData, SequenceGroup,
SequenceGroupMetadata, SequenceOutputs,
SequenceStatus)
# ! reconfigure vllm to faster llama
from vllm.model_executor.model_loader import _MODEL_REGISTRY
from vllm.model_executor.models import LlamaForCausalLM
_MODEL_REGISTRY['FasterLlamaForCausalLM'] = LlamaForCausalLM
def hf_model_weights_iterator(
model_name_or_path: str,
cache_dir: Optional[str] = None,
use_np_cache: bool = False,
) -> Iterator[Tuple[str, torch.Tensor]]:
from vllm.model_executor.weight_utils import Disabledtqdm
# Prepare file lock directory to prevent multiple processes from
# downloading the same model weights at the same time.
lock_dir = cache_dir if cache_dir is not None else "/tmp"
lock_file_name = model_name_or_path.replace("/", "-") + ".lock"
lock = filelock.FileLock(os.path.join(lock_dir, lock_file_name))
# Download model weights from huggingface.
is_local = os.path.isdir(model_name_or_path)
if not is_local:
with lock:
hf_folder = snapshot_download(model_name_or_path,
allow_patterns="*.bin",
cache_dir=cache_dir,
local_files_only=True,
tqdm_class=Disabledtqdm)
else:
hf_folder = model_name_or_path
hf_bin_files = [
# x for x in glob.glob(os.path.join(hf_folder, "*.bin"))
x for x in glob.glob(os.path.join(hf_folder, "*model*.bin"))
if not x.endswith("training_args.bin")
]
hf_safetensors_files = [
x for x in glob.glob(os.path.join(hf_folder, "*model*.safetensors"))
if not x.endswith("training_args.bin")
]
# print(F'Load bin files: {hf_bin_files} // safetensors: {hf_safetensors_files}')
if use_np_cache:
# Convert the model weights from torch tensors to numpy arrays for
# faster loading.
np_folder = os.path.join(hf_folder, "np")
os.makedirs(np_folder, exist_ok=True)
weight_names_file = os.path.join(np_folder, "weight_names.json")
with lock:
if not os.path.exists(weight_names_file):
weight_names = []
for bin_file in hf_bin_files:
state = torch.load(bin_file, map_location="cpu")
for name, param in state.items():
param_path = os.path.join(np_folder, name)
with open(param_path, "wb") as f:
np.save(f, param.cpu().detach().numpy())
weight_names.append(name)
with open(weight_names_file, "w") as f:
json.dump(weight_names, f)
with open(weight_names_file, "r") as f:
weight_names = json.load(f)
for name in weight_names:
param_path = os.path.join(np_folder, name)
with open(param_path, "rb") as f:
param = np.load(f)
yield name, torch.from_numpy(param)
else:
if len(hf_bin_files) > 0:
print(F'Load bin files: {hf_bin_files}')
for bin_file in hf_bin_files:
state = torch.load(bin_file, map_location="cpu")
for name, param in state.items():
yield name, param
del state
torch.cuda.empty_cache()
elif len(hf_safetensors_files) > 0:
print(F'Load safetensor files: {hf_safetensors_files}')
from safetensors.torch import load_file
for safe_file in hf_safetensors_files:
# state = torch.load(bin_file, map_location="cpu")
state = load_file(safe_file)
for name, param in state.items():
yield name, param
del state
torch.cuda.empty_cache()
else:
raise ValueError(f'no files available either bin or safe')
def convert_pyslice_to_tensor(x: Any) -> torch.Tensor:
"""convert PySafeSlice object from safetensors to torch.Tensor
PySafeSlice object supports indexing, which is done before loading the
actual tensor and can reduce the amount of memory being read into the
memory. However, it does not support more advanced functionalities
like `.view()` or `.t()`. Therefore, if we need to modify the loaded
tensor with these more complicated operators, we need to convert to
tensor first.
"""
if not isinstance(x, torch.Tensor):
x = x[:]
return x
def load_padded_tensor_parallel_vocab(
param: torch.Tensor,
loaded_weight: Any, # `torch.Tensor` or `PySafeSlice`
tensor_model_parallel_rank: int,
) -> None:
shard_size = param.shape[0]
start_idx = tensor_model_parallel_rank * shard_size
end_idx = (tensor_model_parallel_rank + 1) * shard_size
loaded_weight = loaded_weight[start_idx:end_idx]
loaded_weight = convert_pyslice_to_tensor(loaded_weight)
param[:loaded_weight.shape[0]].copy_(loaded_weight)
def llama_load_weights(
self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
use_np_cache: bool = False,
load_format: str = "auto",
# load_format: str = "pt",
revision: Optional[str] = None
):
from vllm.model_executor.weight_utils import (
load_tensor_parallel_weights
)
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
tp_size = get_tensor_model_parallel_world_size()
tensor_model_parallel_rank = get_tensor_model_parallel_rank()
q_proj_shard_size = (self.config.hidden_size // tp_size)
kv_proj_shard_size = (self.config.hidden_size //
self.config.num_attention_heads *
getattr(self.config, "num_key_value_heads", self.config.num_attention_heads) // tp_size)
attention_weight_specs = [
# (weight_name, shard_size, offset)
("q_proj", q_proj_shard_size, 0),
("k_proj", kv_proj_shard_size, q_proj_shard_size),
("v_proj", kv_proj_shard_size,
q_proj_shard_size + kv_proj_shard_size),
]
state_dict = self.state_dict()
need_to_load = len(state_dict)
loaded = 0
# try:
# iterator = hf_model_weights_iterator(model_name_or_path, cache_dir, use_np_cache)
# except Exception as e:
# iterator = hf_model_weights_iterator(model_name_or_path, cache_dir, load_format, revision)
iterator = hf_model_weights_iterator(model_name_or_path, cache_dir, use_np_cache)
# for name, loaded_weight in hf_model_weights_iterator(
# model_name_or_path, cache_dir, load_format, revision):
# model_name_or_path, cache_dir, use_np_cache):
for name, loaded_weight in iterator:
if "rotary_emb.inv_freq" in name:
continue
# if "embed_tokens" in name or "lm_head" in name:
# param = state_dict[name]
# # Consider padding in the vocab size.
# padded_vocab_size = (param.shape[0] * tp_size)
# # num_extra_rows = padded_vocab_size - self.config.vocab_size
# num_extra_rows = padded_vocab_size - loaded_weight.size(0)
# load_size = loaded_weight.size()
# extra_rows = torch.empty(num_extra_rows,
# loaded_weight.shape[1])
# extra_rows = extra_rows.to(loaded_weight)
# loaded_weight = torch.cat([loaded_weight, extra_rows], dim=0)
# if num_extra_rows > 0:
# print(f'Add empty to {num_extra_rows} extra row for {name}')
# print(f'Load: {name} | {padded_vocab_size=} | {self.config.vocab_size=} | {num_extra_rows=} | {param.size()=} | {loaded_weight.size()=} | {load_size=}')
if "embed_tokens" in name or "lm_head" in name:
param = state_dict[name]
load_padded_tensor_parallel_vocab(param, loaded_weight, tensor_model_parallel_rank)
loaded += 1
continue
is_attention_weight = False
for weight_name, shard_size, offset in attention_weight_specs:
if weight_name not in name or "qkv_proj" in name:
continue
param = state_dict[name.replace(weight_name, "qkv_proj")]
loaded_weight = loaded_weight[
shard_size * tensor_model_parallel_rank:shard_size *
(tensor_model_parallel_rank + 1)]
param_slice = param.data[offset:offset + shard_size]
assert param_slice.shape == loaded_weight.shape
param_slice.copy_(loaded_weight)
loaded += 1.0 / 3
is_attention_weight = True
break
if is_attention_weight:
continue
# ! qkv_proj is sharded differently if concatenated into qkv
# qkv: qqqq kkkk vvvv
# lweight: qq0qq1 kk0kk1 vv0vv1
# q_shard_size: hidden_size // tp_size = qq
# qkv_s0: qq0_kk0_vv0
# qkv_s1: qq1_kk1_vv1
if "qkv_proj" in name:
param = state_dict[name]
# loaded_weight
qsize = self.config.hidden_size
kvsize = self.config.hidden_size // self.config.num_attention_heads * getattr(self.config, "num_key_value_heads", self.config.num_attention_heads)
q_offsets = (
q_proj_shard_size * tensor_model_parallel_rank,
q_proj_shard_size * (tensor_model_parallel_rank + 1)
)
k_offsets = (
qsize + kv_proj_shard_size * tensor_model_parallel_rank,
qsize + kv_proj_shard_size * (tensor_model_parallel_rank + 1)
)
v_offsets = (
qsize + kvsize + kv_proj_shard_size * tensor_model_parallel_rank,
qsize + kvsize + kv_proj_shard_size * (tensor_model_parallel_rank + 1)
)
_loaded_weight = torch.cat(
[
loaded_weight[q_offsets[0]:q_offsets[1]],
loaded_weight[k_offsets[0]:k_offsets[1]],
loaded_weight[v_offsets[0]:v_offsets[1]],
], 0
)
# print(f'{name} | {q_offsets} | {k_offsets} | {v_offsets}')
assert param.shape == _loaded_weight.shape, f'{param.shape=} != {_loaded_weight.shape=}'
param.data.copy_(_loaded_weight)
loaded += 1.0
is_attention_weight = True
if is_attention_weight:
continue
is_gate_up_weight = False
for stride_id, weight_name in enumerate(["gate_proj", "up_proj"]):
if weight_name not in name or "gate_up_proj" in name:
continue
param = state_dict[name.replace(weight_name, "gate_up_proj")]
shard_size = param.shape[0] // 2
loaded_weight = loaded_weight[
shard_size * tensor_model_parallel_rank:shard_size *
(tensor_model_parallel_rank + 1)]
param_slice = param.data[shard_size * stride_id:shard_size *
(stride_id + 1)]
assert param_slice.shape == loaded_weight.shape
param_slice.copy_(loaded_weight)
loaded += 1.0 / 2
is_gate_up_weight = True
break
if is_gate_up_weight:
continue
if "gate_up_proj" in name:
param = state_dict[name]
shard_size = param.shape[0] // 2
intermediate_size = self.config.intermediate_size
g_offsets = (
shard_size * tensor_model_parallel_rank,
shard_size * (tensor_model_parallel_rank + 1)
)
u_offsets = (
intermediate_size + shard_size * tensor_model_parallel_rank,
intermediate_size + shard_size * (tensor_model_parallel_rank + 1)
)
# print(f'{name} {param.size()} | {g_offsets} | {u_offsets}')
_loaded_weight = torch.cat(
[
loaded_weight[g_offsets[0]:g_offsets[1]],
loaded_weight[u_offsets[0]:u_offsets[1]],
], 0
)
assert param.shape == _loaded_weight.shape
param.data.copy_(_loaded_weight)
loaded += 1.0
is_gate_up_weight = True
if is_gate_up_weight:
continue
param = state_dict[name]
load_tensor_parallel_weights(param, loaded_weight, name,
self._column_parallel_weights,
self._row_parallel_weights,
tensor_model_parallel_rank)
loaded += 1
if np.abs(loaded - need_to_load) < 0.01:
print(f'WARNING: only {loaded} params loaded out of {need_to_load}')
else:
print(f'Loaded all {loaded} params loaded out of {need_to_load}')
# Reassign LlamaForCausalLM.load_weights with llama_load_weights
if not DEBUG:
LlamaForCausalLM.load_weights = llama_load_weights
# ! ==================================================================
set_documentation_group("component")
DATA_ROOT = os.environ.get("dataroot", "/mnt/workspace/workgroup/phi")
MODEL_CACHE_DIR = os.path.join(DATA_ROOT, "pret_models")
DTYPES = {
'float16': torch.float16,
'bfloat16': torch.bfloat16
}
llm = None
demo = None
RELOAD_SIGNAL = '<<<reload:'
BOS_TOKEN = '<s>'
EOS_TOKEN = '</s>'
B_INST, E_INST = "[INST]", "[/INST]"
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
SYSTEM_PROMPT_1 = """You are a multilingual, helpful, respectful and honest assistant. Your name is SeaL and you are built by DAMO Academy, Alibaba Group. Always answer as helpfully as possible, while being safe. Your \
answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure\
that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not \
correct. If you don't know the answer to a question, please don't share false information.
As a multilingual assistant, you must respond and follow instructions in the native language of the user by default, unless told otherwise. \
Your response should adapt to the norms and customs of the respective language and culture.
"""
RES_PRINTED = False
def llama_chat_sys_input_seq_constructor(text, sys_prompt=SYSTEM_PROMPT_1, bos_token=BOS_TOKEN, eos_token=EOS_TOKEN):
return f"{bos_token}{B_INST} {B_SYS} {sys_prompt} {E_SYS} {text} {E_INST}"
def llama_chat_multiturn_sys_input_seq_constructor(
message: str,
history: List[Tuple[str, str]],
sys_prompt=SYSTEM_PROMPT_1,
bos_token=BOS_TOKEN,
eos_token=EOS_TOKEN,
):
"""
```
<bos>[INST] B_SYS SytemPrompt E_SYS Prompt [/INST] Answer <eos>
<bos>[INST] Prompt [/INST] Answer <eos>
<bos>[INST] Prompt [/INST]
```
"""
text = ''
for i, (prompt, res) in enumerate(history):
if i == 0:
text += f"{bos_token}{B_INST} {B_SYS} {sys_prompt} {E_SYS} {prompt} {E_INST}"
else:
text += f"{bos_token}{B_INST} {prompt} {E_INST}"
if res is not None:
text += f" {res} {eos_token} "
if len(history) == 0 or text.strip() == '':
text = f"{bos_token}{B_INST} {B_SYS} {sys_prompt} {E_SYS} {message} {E_INST}"
else:
text += f"{bos_token}{B_INST} {message} {E_INST}"
return text
@document()
class ChatBot(gr.Chatbot):
def _postprocess_chat_messages(
self, chat_message
):
x = super()._postprocess_chat_messages(chat_message)
if isinstance(x, str):
x = x.replace("\n", "<br>")
return x
def load_ckpt(ckpt_file: str) -> str:
global llm
status = "Failed"
if not os.path.exists(ckpt_file):
status = f"Failed - file not found: {ckpt_file}"
elif not ckpt_file.endswith(".bin"):
status = f"Failed - file not .bin: {ckpt_file}"
else:
try:
state_dict = torch.load(ckpt_file, map_location='cpu')
print(f'loaded state_dict: {ckpt_file}')
llm.llm_engine.workers[0].model.load_state_dict(state_dict)
status = f'Success. Loaded {ckpt_file}'
except Exception as e:
status = f'Failed - {str(e)}'
return status
def chat_response(message, history, temperature: float, max_tokens: int, system_prompt: str = '') -> str:
global llm
assert llm is not None
temperature = float(temperature)
max_tokens = int(max_tokens)
if system_prompt.strip() != '':
# chat version, add system prompt
message = llama_chat_sys_input_seq_constructor(
message.strip(),
sys_prompt=system_prompt
)
sampling_params = SamplingParams(temperature=temperature, max_tokens=max_tokens)
gen = llm.generate(message, sampling_params)
out = gen[0].outputs[0].text
# print(f'{message}<<<{out}>>>')
return f'{out}'
def vllm_abort(self: Any):
scheduler = self.llm_engine.scheduler
for state_queue in [scheduler.waiting, scheduler.running, scheduler.swapped]:
for seq_group in state_queue:
# if seq_group.request_id == request_id:
# Remove the sequence group from the state queue.
state_queue.remove(seq_group)
for seq in seq_group.seqs:
if seq.is_finished():
continue
scheduler.free_seq(seq, SequenceStatus.FINISHED_ABORTED)
# def _vllm_run_engine(self: LLM, use_tqdm: bool = False) -> Dict[str, RequestOutput]:
def _vllm_run_engine(self: Any, use_tqdm: bool = False) -> Dict[str, Any]:
# Initialize tqdm.
if use_tqdm:
num_requests = self.llm_engine.get_num_unfinished_requests()
pbar = tqdm(total=num_requests, desc="Processed prompts")
# Run the engine.
outputs: Dict[str, RequestOutput] = {}
while self.llm_engine.has_unfinished_requests():
step_outputs = self.llm_engine.step()
for output in step_outputs:
# if output.finished:
# outputs.append(output)
# if use_tqdm:
# pbar.update(1)
outputs[output.request_id] = output
# outputs = sorted(outputs, key=lambda x: int(x.request_id))
if len(outputs) > 0:
yield outputs
# if use_tqdm:
# pbar.close()
# Sort the outputs by request ID.
# This is necessary because some requests may be finished earlier than
# its previous requests.
# outputs = sorted(outputs, key=lambda x: int(x.request_id))
# return outputs
def vllm_generate_stream(
self: Any,
prompts: Optional[Union[str, List[str]]] = None,
sampling_params: Optional[Any] = None,
prompt_token_ids: Optional[List[List[int]]] = None,
use_tqdm: bool = False,
) -> Dict[str, Any]:
"""Generates the completions for the input prompts.
NOTE: This class automatically batches the given prompts, considering
the memory constraint. For the best performance, put all of your prompts
into a single list and pass it to this method.
Args:
prompts: A list of prompts to generate completions for.
sampling_params: The sampling parameters for text generation. If
None, we use the default sampling parameters.
prompt_token_ids: A list of token IDs for the prompts. If None, we
use the tokenizer to convert the prompts to token IDs.
use_tqdm: Whether to use tqdm to display the progress bar.
Returns:
A list of `RequestOutput` objects containing the generated
completions in the same order as the input prompts.
"""
if prompts is None and prompt_token_ids is None:
raise ValueError("Either prompts or prompt_token_ids must be "
"provided.")
if isinstance(prompts, str):
# Convert a single prompt to a list.
prompts = [prompts]
if prompts is not None and prompt_token_ids is not None:
if len(prompts) != len(prompt_token_ids):
raise ValueError("The lengths of prompts and prompt_token_ids "
"must be the same.")
if sampling_params is None:
# Use default sampling params.
sampling_params = SamplingParams()
# Add requests to the engine.
if prompts is not None:
num_requests = len(prompts)
else:
num_requests = len(prompt_token_ids)
for i in range(num_requests):
prompt = prompts[i] if prompts is not None else None
if prompt_token_ids is None:
token_ids = None
else:
token_ids = prompt_token_ids[i]
self._add_request(prompt, sampling_params, token_ids)
# return self._run_engine(use_tqdm)
yield from _vllm_run_engine(self, use_tqdm)
def chat_response_stream(
message: str,
history: List[Tuple[str, str]],
temperature: float,
max_tokens: int,
frequency_penalty: float,
system_prompt: str
) -> str:
global llm, RES_PRINTED
assert llm is not None
# force removing all
vllm_abort(llm)
temperature = float(temperature)
frequency_penalty = float(frequency_penalty)
max_tokens = int(max_tokens)
if system_prompt.strip() != '':
# chat version, add system prompt
message = llama_chat_sys_input_seq_constructor(
message.strip(),
sys_prompt=system_prompt
)
sampling_params = SamplingParams(
temperature=temperature, max_tokens=max_tokens,
frequency_penalty=frequency_penalty,
)
cur_out = None
for gen in vllm_generate_stream(llm, message, sampling_params):
if cur_out is not None:
yield cur_out
assert len(gen) == 1, f'{gen}'
item = next(iter(gen.values()))
cur_out = item.outputs[0].text
if not RES_PRINTED:
print(f'{message}<<<{cur_out}>>>')
RES_PRINTED = True
if cur_out is not None:
yield cur_out
def chat_response_stream_multiturn(
message: str,
history: List[Tuple[str, str]],
temperature: float,
max_tokens: int,
frequency_penalty: float,
system_prompt: str
) -> str:
"""Build multi turn
<bos>[INST] B_SYS SytemPrompt E_SYS Prompt [/INST] Answer <eos>
<bos>[INST] Prompt [/INST] Answer <eos>
<bos>[INST] Prompt [/INST]
message is incoming prompt
history don't have the current messauge
"""
global llm, RES_PRINTED
assert llm is not None
assert system_prompt.strip() != '', f'system prompt is empty'
# force removing all
vllm_abort(llm)
temperature = float(temperature)
frequency_penalty = float(frequency_penalty)
max_tokens = int(max_tokens)
# history.append([message, None])
# history will be appended with message later on
full_prompt = llama_chat_multiturn_sys_input_seq_constructor(
message, history, sys_prompt=system_prompt
)
sampling_params = SamplingParams(
temperature=temperature, max_tokens=max_tokens,
frequency_penalty=frequency_penalty,
)
cur_out = None
for gen in vllm_generate_stream(llm, full_prompt, sampling_params):
if cur_out is not None:
yield cur_out
assert len(gen) == 1, f'{gen}'
item = next(iter(gen.values()))
cur_out = item.outputs[0].text
if not RES_PRINTED:
print(f'{full_prompt}<<<{cur_out}>>>')
RES_PRINTED = True
if cur_out is not None:
yield cur_out
def debug_chat_response_echo(
message: str,
history: List[Tuple[str, str]],
temperature: float = 0.0,
max_tokens: int = 4096,
frequency_penalty: float = 0.4,
system_prompt: str = SYSTEM_PROMPT_1,
) -> str:
yield f"repeat: {message}"
# ============ CONSTANT ============
MODEL_NAME = "DAMO-SeaL-13B"
MODEL_TITLE = "DAMO-SeaL-13B - An Assistant for South East Asian Languages"
MODEL_DESC = """
This is a 13B DAMO-SeaL-Chat assistant model built by DAMO Academy, Alibaba Group. It can produce helpful responses in English, Vietnamese, Indonesian and Thai.
<br>
#### Citation
If you find our project useful, hope you can star our repo and cite our paper as follows:
```
@article{damonlpsg2023seallm,
author = {???},
title = {SeaL: A language model for South East Asian Languages},
year = 2023,
}
```
""".strip()
cite_markdown = """
"""
# journal = {arXiv preprint arXiv:2306.02858}
# url = {https://arxiv.org/abs/2306.02858}
TENSOR_PARALLEL = int(os.environ.get("TENSOR_PARALLEL", "1"))
DTYPE = 'bfloat16'
DTYPE = 'float16'
MODEL_PATH = os.environ.get("MODEL_PATH", "notfound, please set `export MODEL_PATH=`")
def launch():
global demo, llm, DEBUG
model_desc = MODEL_DESC
model_path = MODEL_PATH
model_title = MODEL_TITLE
tensor_parallel = TENSOR_PARALLEL
assert tensor_parallel > 0 , f'{tensor_parallel} invalid'
dtype = DTYPE
sys_prompt = SYSTEM_PROMPT_1
max_tokens = 4096
if DEBUG:
model_desc += "\n<br>!!!!! This is in debug mode, responses will be copy original"
response_fn = debug_chat_response_echo
else:
# ! load the model
assert os.path.exists(model_path), f'{model_path} not found'
llm = LLM(model=model_path, dtype=dtype, tensor_parallel_size=tensor_parallel)
print(f'Use system prompt:\n{sys_prompt}')
# response_fn = chat_response_stream_multiturn if args.multiturn else chat_response_stream
response_fn = chat_response_stream_multiturn
print(F'respond: {response_fn}')
demo = gr.ChatInterface(
response_fn,
chatbot=ChatBot(
# value=MODEL_NAME,
bubble_full_width=False,
latex_delimiters=[
{ "left": "$", "right": "$", "display": False},
{ "left": "$$", "right": "$$", "display": True},
]
),
textbox=gr.Textbox(placeholder='Type message', lines=8, max_lines=128, min_width=200),
submit_btn=gr.Button(value='Submit', variant="primary", scale=0),
# stop_btn=None,
title=f"{model_title}",
description=f"{model_desc}",
# ! decide if can change the system prompt.
additional_inputs=[
gr.Number(value=0, label='Temperature (higher -> more random)'),
gr.Number(value=max_tokens, label='Max generated tokens (increase if want more generation)'),
gr.Number(value=0.4, label='Frequency penalty (> 0 encourage new tokens)'),
gr.Textbox(value=sys_prompt, label='System prompt', lines=8)],
)
# with gr.Blocks() as demo:
# gr.ChatInterface(
# response_fn,
# chatbot=ChatBot(
# bubble_full_width=False,
# latex_delimiters=[
# { "left": "$", "right": "$", "display": False},
# { "left": "$$", "right": "$$", "display": True},
# ]
# ),
# textbox=gr.Textbox(placeholder='Type message', lines=8, max_lines=128, min_width=200),
# submit_btn=gr.Button(value='Submit', variant="primary", scale=0),
# # stop_btn=None,
# title=f"{model_title}",
# description=f"{model_desc}",
# # ! decide if can change the system prompt.
# additional_inputs=[
# gr.Number(value=0, label='Temperature (higher -> more random)'),
# gr.Number(value=max_tokens, label='Max generated tokens (increase if want more generation)'),
# gr.Number(value=0.4, label='Frequency penalty (> 0 encourage new tokens)'),
# gr.Textbox(value=sys_prompt, label='System prompt', lines=8)
# ],
# )
# gr.Markdown(cite_markdown)
demo.queue()
# demo.launch(server_port=args.port)
demo.launch()
def main():
# launch(parser.parse_args())
launch()
if __name__ == "__main__":
main()
"""
export CUDA_VISIBLE_DEVICES=0
export MODEL_PATH=${dataroot}/hf_train/pretrain_lm/swpn/merlion13s108Hi8kPretFlCW8k.LMFromHf.a.gc.t5k0.vizhthid.mean_std.TrainTask.NLNL.Multi.Vi.FSePlCq13M.FSePlCq13M.m4k.b8.lr1e5.linear.wa0k.ms858k.grac1.se1.8g.v4c.zfsdp/step_4000
export MODEL_PATH=${dataroot}/llama-2-7b-lxxp-faster
export MODEL_PATH=${dataroot}/llama-2-7b-chat-xp
python app.py
""" |