import gradio as gr import time import transformers from transformers import Qwen2AudioForConditionalGeneration, AutoProcessor from io import BytesIO from urllib.request import urlopen import librosa import os, json from sys import argv from vllm import LLM, SamplingParams import vllm import re def load_model_processor(model_path): processor = AutoProcessor.from_pretrained(model_path) llm = LLM( model=model_path, trust_remote_code=True, gpu_memory_utilization=0.8, enforce_eager=True, device = "cuda", limit_mm_per_prompt={"audio": 5}, ) return llm, processor model_path1 = "SeaLLMs/SeaLLMs-Audio-7B" model1, processor1 = load_model_processor(model_path1) def response_to_audio(audio_url, text, model=None, processor=None, temperature = 0,repetition_penalty=1.1, top_p = 0.9,max_new_tokens = 2048): if text == None: conversation = [ {"role": "user", "content": [ {"type": "audio", "audio_url": audio_url}, ]},] elif audio_url == None: conversation = [ {"role": "user", "content": [ {"type": "text", "text": text}, ]},] else: conversation = [ {"role": "user", "content": [ {"type": "audio", "audio_url": audio_url}, {"type": "text", "text": text}, ]},] text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False) audios = [] for message in conversation: if isinstance(message["content"], list): for ele in message["content"]: if ele["type"] == "audio": if ele['audio_url'] != None: audios.append(librosa.load( ele['audio_url'], sr=processor.feature_extractor.sampling_rate)[0] ) sampling_params = SamplingParams( temperature=temperature, max_tokens=max_new_tokens, repetition_penalty=repetition_penalty, top_p=top_p, top_k=20, stop_token_ids=[], ) input = { 'prompt': text, 'multi_modal_data': { 'audio': [(audio, 16000) for audio in audios] } } output = model.generate([input], sampling_params=sampling_params)[0] response = output.outputs[0].text return response def clear_inputs(): return None, "", "" def contains_chinese(text): # Regular expression for Chinese characters chinese_char_pattern = re.compile(r'[\u4e00-\u9fff]') return bool(chinese_char_pattern.search(text)) def compare_responses(audio_url, text): if contains_chinese(text): return "Caution! This demo does not support Chinese!" response1 = response_to_audio(audio_url, text, model1, processor1) if contains_chinese(response1): return "ERROR! Try another example!" return response1 with gr.Blocks() as demo: # gr.Markdown(f"Evaluate {model_path1}") gr.HTML("""
""") # gr.Image("images/seal_logo.png", elem_id="seal_logo", show_label=False,height=80,show_fullscreen_button=False) gr.HTML("""