File size: 1,376 Bytes
78a2900
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import transformers
import pandas as pd
import streamlit as st
from preprocess import preprocess_data

def anonymize_text(text):
    model_name = "distilbert-base-uncased"
    tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
    model = transformers.AutoModelForMaskedLM.from_pretrained(model_name)

    input_ids = tokenizer.encode(text, return_tensors="pt")
    mask_token_index = torch.where(input_ids == tokenizer.mask_token_id)[1]

    token_logits = model(input_ids)[0]
    mask_token_logits = token_logits[0, mask_token_index, :]

    top_5_tokens = torch.topk(mask_token_logits, 5, dim=1).indices[0].tolist()

    anonymized_text = []
    for token in top_5_tokens:
        token = tokenizer.decode([token])
        anonymized_text.append(token)

    return anonymized_text

def run_app():
    st.title("Text Anonymization App")

    # File upload
    st.subheader("Upload your data")
    file = st.file_uploader("Upload CSV", type=["csv"])

    if file is not None:
        # Read the file
        data = pd.read_csv(file)

        # Preprocess the data
        preprocessed_data = preprocess_data(data)

        # Column selection
        st.subheader("Select columns to anonymize")
        selected_columns = []
        for col in preprocessed_data.columns:
            if st.checkbox(col):
                selected_columns.append(col)

        #