File size: 18,953 Bytes
cc85e57
1676cb9
cc85e57
 
 
 
 
1676cb9
 
 
 
767fb92
cc85e57
1676cb9
 
f0c4505
88292ed
 
1676cb9
 
cc85e57
 
 
635cf26
a73fc3f
cc85e57
 
 
 
1676cb9
 
cc85e57
 
 
 
 
1676cb9
 
 
fab8f90
767fb92
02f6635
1676cb9
 
8be0fbe
bb17d08
 
ec4794b
 
 
 
 
daf4ed8
1405ad0
581885a
 
 
 
 
 
e6f5266
 
152e3dd
856cb99
 
 
 
 
 
 
 
 
581885a
980e343
 
 
 
 
1676cb9
f0c4505
1676cb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0c4505
767fb92
1676cb9
767fb92
1676cb9
 
 
 
 
 
 
 
f7f096d
1676cb9
 
f7f096d
1676cb9
 
 
 
 
767fb92
1676cb9
 
 
 
767fb92
 
 
 
 
1676cb9
 
f0c4505
767fb92
1676cb9
 
767fb92
1676cb9
 
 
 
 
 
 
8558a57
1676cb9
 
 
 
 
 
 
 
 
767fb92
1676cb9
 
 
 
c10ed81
 
 
 
 
152e3dd
980e343
f0c4505
980e343
f0c4505
 
980e343
1676cb9
1405ad0
bb17d08
f0c4505
 
88292ed
f0c4505
 
980e343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88292ed
980e343
 
 
 
 
 
 
 
a1f0ffd
980e343
a1f0ffd
980e343
a1f0ffd
 
767fb92
 
2735b22
 
 
 
 
 
 
 
 
 
 
 
 
f0c4505
30430b0
3f0b2ee
 
 
4a27b60
 
3f0b2ee
b6c98ec
1676cb9
bb17d08
1676cb9
767fb92
a42a9d1
1676cb9
767fb92
 
 
 
 
 
2735b22
 
 
 
 
 
 
 
5ea2e5e
4ab0950
8c192f4
 
95d561f
 
767fb92
95d561f
b6c98ec
88292ed
1676cb9
bb17d08
1676cb9
 
767fb92
980e343
 
767fb92
 
 
 
 
 
 
 
5cc378b
767fb92
 
 
1676cb9
767fb92
1676cb9
 
 
 
d262ca0
 
f0c4505
d262ca0
465449c
d262ca0
 
 
465449c
d262ca0
 
 
980e343
 
 
d262ca0
 
 
980e343
f0c4505
 
8c192f4
f0c4505
 
 
980e343
f0c4505
8c192f4
f0c4505
 
 
980e343
 
8c192f4
 
980e343
f0c4505
980e343
1676cb9
980e343
 
d262ca0
980e343
d262ca0
980e343
fdb1bd1
980e343
767fb92
980e343
d262ca0
980e343
 
8c192f4
f0c4505
1fa8c7a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import os, sys, json, re, time, base64, random, shutil
import gradio as gr
import numpy as np
import requests
from requests import Session
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
from datetime import datetime
import urllib.parse
from groq import Groq
from exif import Image
from PIL import Image as PILImage, ExifTags as PILExifTags
from io import BytesIO
import colorsys

# MARK: INIT
# MAX_SEED = np.iinfo(np.int32).max
MAX_SEED = 9999
MAX_IMAGE_SIZE = 2048

GROQ_APIKEY_PROMPTENHANCE = os.getenv("GROQ_APIKEY_PROMPTENHANCE")
API_V1 = os.getenv("API_V1")
API_V1_MODELS = urllib.parse.unquote(API_V1 + "/models")
API_V1_IMAGE = urllib.parse.unquote(API_V1 + "/imagine")
API_OLD = urllib.parse.unquote(os.getenv("API_OLD"))

# print(API_V1_MODELS)
# print(API_V1_IMAGE)

CACHE_DIR = os.path.join(os.path.dirname(__file__), "cache")
IMAGE_DIR = os.path.join(CACHE_DIR, "images")
if not os.path.exists(CACHE_DIR):
    os.makedirs(CACHE_DIR)
    print(f"Created cache dir on path {CACHE_DIR}")
    os.makedirs(IMAGE_DIR)
    print(f"Created images dir on path {IMAGE_DIR}")

RES = os.path.join(os.path.dirname(__file__), "_res")

gr.set_static_paths(paths=["_res/assets/", "_res/assets/emojis/", "_res/assets/favicons/"])

custom_css = RES + "/_custom.css"
custom_js = RES + "/_custom.js"

custom_head = f"""
        <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.9.0/css/all.min.css"/>
        <script src="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.9.0/js/all.min.js"></script>
        <link rel="apple-touch-icon" sizes="180x180" href="file=_res/assets/favicons/apple-touch-icon.png">
        <link rel="icon" type="image/png" sizes="32x32" href="file=_res/assets/favicons/favicon-32x32.png">
        <link rel="icon" type="image/png" sizes="16x16" href="file=_res/assets/favicons/favicon-16x16.png">
        <link rel="icon" type="image/x-icon" href="file=_res/assets/favicons/favicon.ico">
        <link rel="manifest" href="file=_res/assets/favicons/site.webmanifest">
"""

theme = gr.themes.Soft(
    # primary_hue="orange",
    radius_size="sm",
    neutral_hue=gr.themes.Color(c100="#a6adc8", c200="#9399b2", c300="#7f849c", c400="#6c7086", c50="#cdd6f4", c500="#585b70", c600="#45475a", c700="#313244", c800="#1e1e2e", c900="#181825", c950="#11111b"),
)

title = "Bilder Builder"


def check_api(url):
    try:
        response = requests.get(url, timeout=2)
        return response.status_code
    except requests.exceptions.RequestException as e:
        print(f"An error occurred: {e}")
        return None

    
# MARK: GET PREV. IMAGES
def get_gallery_images(dirpath):
    gallery_images = [dirpath + "/" + s for s in os.listdir(dirpath) if os.path.isfile(os.path.join(dirpath, s))]
    gallery_images.sort(key=lambda s: os.path.getmtime(s), reverse=True)
    return gallery_images


# MARK: READ EXIF
def read_exif(image_path):
    with open(image_path, "rb") as src:
        img = Image(src)
        img_comment = json.loads(img.user_comment)

        # checking if the key exists before removing
        if "concept" in img_comment:
            img_comment.pop("concept")

        return img_comment


def read_image_exfi_data(image_path):
    print("Imagepath:", image_path)
    img_exif_make, img_exif_comment = read_exif(image_path)
    return None, image_path, img_exif_comment


# MARK: GROQ PROMPT ENHANCE
def groq_enhance_process(Prompt=""):
    client = Groq(api_key=GROQ_APIKEY_PROMPTENHANCE)
    Prompt = "random prompt" if Prompt == "" else Prompt
    SYSTEMPROMPT = os.path.join(RES, "groq_systemmessage_prompt_enhance.json")
    with open(SYSTEMPROMPT, "r") as f:
        SYSTEMPROMPT = json.load(f)

    completion = client.chat.completions.create(
        model="llama-3.1-70b-versatile",
        messages=[SYSTEMPROMPT, {"role": "user", "content": Prompt}],
        temperature=0.8,
        max_tokens=512,
        top_p=0.9,
        stream=False,
        seed=random.randint(0, MAX_SEED),
        stop=None,
    )

    if completion.choices[0].message.content != "":
        enhanced_prompt = completion.choices[0].message.content
        enhanced_prompt = re.sub(r"[\.\"]+", "", enhanced_prompt)

    return enhanced_prompt


def image_get_size(image_path):
    img = PILImage.open(image_path)
    print("Image size:", img.size)
    width, height = img.size
    return width, height


# MARK: DOMINANT COLOR
def image_get_dominant_color(image_path):
    img = PILImage.open(image_path)
    img = img.convert("RGB")
    img = img.resize((100, 100), resample=0)
    pixels = list(img.getdata())

    # Erzeuge eine Liste mit den Häufigkeiten der Farben
    colors = []
    for pixel in pixels:
        r, g, b = pixel
        h, s, v = colorsys.rgb_to_hsv(r / 255, g / 255, b / 255)
        if v > 0.5:  # Filteriere hellere Farben aus
            continue
        if v > 0.99:  # Filteriere Weiß aus
            continue
        colors.append((h, s, v))

    # Ermittle die dominante Farbe
    dominant_color = max(colors, key=lambda x: x[2])
    dominant_color_rgb = colorsys.hsv_to_rgb(dominant_color[0], dominant_color[1], dominant_color[2])
    dominant_color_rgb = [int(c * 255) for c in dominant_color_rgb]
    dominant_color_rgb = f"rgb({dominant_color_rgb[0]}, {dominant_color_rgb[1]}, {dominant_color_rgb[2]})"
    print(dominant_color_rgb)

    return dominant_color_rgb


# MARK: CLEAR COMPONENTS
def clear_components():
    return None


def process(Prompt, used_model, image_width, image_height, image_ratio, image_seed, randomize_seed):
    if Prompt == "":
        gr.Info("Kein Prompt angegeben, es wird ein zufälliger Prompt generiert.", duration=12)
        Prompt = groq_enhance_process("random prompt")

    image_ratio = "9:16" if image_ratio == "" else image_ratio
    used_seed = random.randint(0, MAX_SEED) if image_seed == 0 or randomize_seed else image_seed
    # used_model = "turbo" if int(image_width) > 1024 or int(image_height) > 1024 else "flux"  # turbo, flux

    timestamp = datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
    filename_prompt = re.sub(r"[^\w\s-]", "", Prompt).strip().replace(" ", "_")
    filename = timestamp + "_" + filename_prompt[:100] + ".png"
    file_path = os.path.join(IMAGE_DIR, filename)

    # Retry-Logik mit requests und Retry
    session = Session()
    retries = Retry(total=3, status_forcelist=[429, 500, 502, 503, 504], backoff_factor=0.3, respect_retry_after_header=True)  # Max 3 Versuche  # Codes, die wiederholt werden  # Exponential Backoff  # Retry-Header beachten
    adapter = HTTPAdapter(max_retries=retries)
    session.mount("https://", adapter)
    session.mount("http://", adapter)

    API_OLD_REQUEST_URL = f"{API_OLD}{urllib.parse.quote(Prompt)}?model=flux&width={image_width}&height={image_height}&nologo=true&enhance=false&nofeed=true&seed={used_seed}"
    API_V1_REQUEST_URL = f"{API_V1_IMAGE}?prompt={urllib.parse.quote(Prompt)}&size={urllib.parse.quote(image_ratio)}&seed={used_seed}&model={used_model.lower()}"
    REQUEST_URL = API_V1_REQUEST_URL if used_model.lower() != "flux-api-old" else API_OLD_REQUEST_URL
    print(REQUEST_URL)
    try:
        response = session.get(REQUEST_URL, timeout=60)
        if response.status_code == 200:
            print("Imagine API Request solved")
            print("Save image to: " + file_path)
            img = PILImage.open(BytesIO(response.content))
            img.save(file_path, "PNG")

            # img_exif_comment = "" # read_exif(file_path)
            img_dominant_color = image_get_dominant_color(file_path)
            img_width, img_height = image_get_size(file_path)

            return ({"value": Prompt, "__type__": "update"}, {"value": file_path, "__type__": "update"}, {"value": None, "visible": False, "__type__": "update"}, {"visible": True, "__type__": "update"}, {"value": Prompt, "visible": True, "__type__": "update"}, img_width, img_height, used_seed, {"value": file_path, "visible": True, "__type__": "update"}, img_dominant_color, used_seed)
        else:
            print("Imagine API Request ERROR")
            raise gr.Error("Imagine API-Aufruf fehlgeschlagen 💥!", duration=15)
    except requests.exceptions.Timeout:
        raise gr.Error("⏰ Zeitüberschreitung beim API-Aufruf", duration=15)
    except requests.exceptions.RequestException as e:
        print(f"Unbekannter Fehler beim API-Aufruf: {e}")
        raise gr.Error("Unbekannter Fehler beim API-Aufruf! 🤷‍♂️", duration=15)


def get_inference_models():
    models = []
    if check_api(API_OLD) == 200:
        models.append("FLUX-API-OLD")
        selected_model = "FLUX-API-OLD"
    if check_api(API_V1_IMAGE) == 200:
        models_new_api = ["FLUX", "FLUX-Realism", "FLUX-Pixel", "FLUX-Anime", "FLUX-3D", "FLUX-Disney", "ANY-DARK", "Stable-Diffusion-XL-Base", "Stable-Diffusion-XL-Lightning"]
        for model in models_new_api:
            models.append(model)
        selected_model = "FLUX"
    return models, selected_model


# MARK: Gradio BLOCKS UI
with gr.Blocks(theme=theme, head=custom_head, css=custom_css, js=custom_js, title=title) as demo:
    with gr.Row(elem_classes="row-header"):
        gr.Markdown(f"""
                <h1>{title}</h1>
                <p><span style="font-weight: 600">LG Sebastian</span> <i class="winking-hand-emoji"></i>  gib dem Space gerne ein <i class="heart-beat-emoji"></i></p>
                """, elem_classes="md-header",)
                    
    with gr.Tab("Bilder Builder"):
        with gr.Row():
            with gr.Column(scale=2):  # min_width=420,
                with gr.Row():
                    placeholder_text = "[???] Generiert dir einen zufälligen Prompt.\n[STERN] optimiert deinen eignen Prompt.\n[RUN] generiert dein Bild."
                    text_prompt = gr.Textbox(label="Prompt", show_label=False, lines=12, max_lines=18, placeholder=placeholder_text, elem_id="prompt_input", elem_classes="prompt-input hide-progress", autofocus=True)
                with gr.Row():
                    random_prompt_button = gr.Button("", variant="secondary", elem_id="random_prompt_btn", elem_classes="random-prompt-btn", icon="_res/assets/star_light_48.png")
                    enhance_prompt_button = gr.Button("", variant="secondary", elem_id="enhance_prompt_btn", elem_classes="enhance-prompt-btn", icon="_res/assets/star_light_48.png")
                    run_button = gr.Button("Erstellen", variant="primary", elem_id="run_btn", elem_classes="run-btn")
                with gr.Row(elem_classes="image_size_selctor_wrapper"):
                    with gr.Column(scale=1):
                        with gr.Row():
                            inference_models, select_model = get_inference_models()
                            # inference_models = ["FLUX-API-OLD"]
                            # selected_model = "FLUX-API-OLD"
                            # models_new_api = ["FLUX", "FLUX-Realism", "FLUX-Pixel", "FLUX-Anime", "FLUX-3D", "FLUX-Disney", "ANY-DARK", "Stable-Diffusion-XL-Base", "Stable-Diffusion-XL-Lightning"]
                            # if check_api(API_V1_IMAGE) == 200:
                            #     selected_model = "FLUX"
                            #     for model in models_new_api:
                            #         inference_models.append(model)
                            select_model = gr.Dropdown(choices=inference_models, value=selected_model, label="Model", elem_id="select_model", elem_classes="select-model")
                            # with gr.Row():
                            image_width = gr.Number(label="Breite", minimum=256, maximum=MAX_IMAGE_SIZE, value=576, step=32, elem_id="image_width_selector", elem_classes="image-width-selector", scale=1, visible=False)
                            image_height = gr.Number(label="Höhe", minimum=256, maximum=MAX_IMAGE_SIZE, value=1024, step=32, elem_id="image_height_selector", elem_classes="image-height-selector", scale=1, visible=False)
                        with gr.Row():
                            image_ratio_buttons = gr.Radio(["9:16", "3:4", "2:3", "1:1"], value="9:16", label="Hochformat", show_label=True, info="Die gängigsten Seitenverhältnissen.", interactive=True, elem_id="image_ratio_buttons", elem_classes="image-ratio-buttons", container=True, scale=2)
                            switch_width_height = gr.Button("", size="sm", elem_id="switch_width_height", elem_classes="switch-ratio-btn", variant="primary", scale=1)
                        with gr.Column():
                            randomize_seed = gr.Checkbox(label="Randomize seed", value=True, elem_classes="random-seed-cb")
                            image_seed = gr.Slider(label="Seed", info="Jeder Seed generiert ein anderes Bild mit dem selben Prompt", minimum=0, step=1, value=42, maximum=MAX_SEED, elem_id="image_seed", elem_classes="image-seed hide-progress", interactive=False)

            with gr.Column(scale=4):  # min_width=600,
                with gr.Row():
                    with gr.Column(scale=1):
                        with gr.Row():
                            output_image = gr.Image(show_label=False, min_width=320, scale=3, elem_id="output_image", elem_classes="output-image", type="filepath", format="webp")
                            # gallery = gr.Gallery(label="Bisher erstellte Bilder", show_label=True, value=get_gallery_images(IMAGE_DIR), elem_id="gallery", columns=[4], object_fit="cover", height="auto", interactive=False, format="webp")
                            with gr.Column(scale=1, visible=False, elem_classes="image-info-wrapper") as image_info_wrapper:
                                with gr.Group():
                                    image_informations = gr.Markdown("""## Bildinformationen""", visible=True)
                                with gr.Row(elem_classes="img-size-wrapper"):
                                    image_info_tb_width = gr.Textbox(label="Breite", lines=1, max_lines=1, interactive=False, show_copy_button=True, elem_classes="image-info-tb-width")
                                    image_info_tb_height = gr.Textbox(label="Höhe", lines=1, max_lines=1, interactive=False, show_copy_button=True, elem_classes="image-info-tb-height")
                                with gr.Row(elem_classes="img-seed-wrapper"):
                                    image_info_tb_seed = gr.Textbox(label="Seed", lines=1, max_lines=1, interactive=False, show_copy_button=True, elem_classes="image-info-tb-seed")
                                    image_info_tb_prompt = gr.Textbox("Bild Prompt", lines=4, max_lines=8, interactive=False, elem_classes="hide-progress", show_copy_button=True, visible=False)
                                image_download_button = gr.DownloadButton("Bild herunterladen", value=None, elem_classes="download-button", variant="primary", visible=False)

                output_url = gr.Textbox(label="Output URL", show_label=True, interactive=False, visible=False)
                outpu_image_comment = gr.Json(visible=False)
                output_dominant_image_color = gr.Textbox(show_label=False, elem_id="dominant_image_color", visible=True, elem_classes="output-dominant-image-color")

        def switch_image_size_values(image_width, image_height):
            return image_height, image_width

        def switch_image_ratio_buttons(ratio_value):
            ratio_value = ratio_value.split(":")
            ratio_value_new = f"{int(ratio_value[1])}:{int(ratio_value[0])}"

            if int(ratio_value[1]) > int(ratio_value[0]):
                # Querformat
                new_choises = ["16:9", "4:3", "3:2", "1:1"]
                new_label = "Querformat"
            elif int(ratio_value[1]) < int(ratio_value[0]):
                # Hochformat
                new_choises = ["9:16", "3:4", "2:3", "1:1"]
                new_label = "Hochformat"
            elif int(ratio_value[1]) == int(ratio_value[0]):
                new_choises = image_ratio_buttons.choices
                new_label = "Quadratisch"

            return {"choices": new_choises, "value": ratio_value_new, "label": new_label, "__type__": "update"}

        def calculate_ratio_values(image_ratio_buttons):
            ratio_value = image_ratio_buttons.split(":")
            if int(ratio_value[0]) > int(ratio_value[1]):
                a = 1024
                b = int(a * int(ratio_value[1]) / int(ratio_value[0]))
                new_width = a
                new_height = b
                new_label = "Querformat"
            elif int(ratio_value[0]) < int(ratio_value[1]):
                b = 1024
                a = int(b * int(ratio_value[0]) / int(ratio_value[1]))
                new_width = a
                new_height = b
                new_label = "Hochformat"
            elif int(ratio_value[0]) == int(ratio_value[1]):
                new_width = 1024
                new_height = 1024
                new_label = "Quadratisch"

            return {"label": new_label, "__type__": "update"}, new_width, new_height

        switch_width_height.click(fn=switch_image_size_values, inputs=[image_width, image_height], outputs=[image_width, image_height], show_progress="hidden", show_api=False)
        switch_width_height.click(fn=switch_image_ratio_buttons, inputs=[image_ratio_buttons], outputs=[image_ratio_buttons], show_progress="hidden", show_api=False)

        image_ratio_buttons.input(fn=calculate_ratio_values, inputs=[image_ratio_buttons], outputs=[image_ratio_buttons, image_width, image_height], show_progress="hidden", show_api=False)

        run_button.click(fn=lambda: ({"interactive": False, "__type__": "update"}, {"interactive": False, "__type__": "update"}, {"interactive": False, "__type__": "update"}), outputs=[run_button, enhance_prompt_button, random_prompt_button], show_api=False).then(fn=clear_components, outputs=[output_image], show_api=False).then(
            fn=process, inputs=[text_prompt, select_model, image_width, image_height, image_ratio_buttons, image_seed, randomize_seed], outputs=[text_prompt, output_image, output_url, image_informations, image_info_tb_prompt, image_info_tb_width, image_info_tb_height, image_info_tb_seed, image_download_button, output_dominant_image_color, image_seed]
        ).then(fn=lambda: ({"interactive": True, "__type__": "update"}, {"interactive": True, "__type__": "update"}, {"interactive": True, "__type__": "update"}), outputs=[run_button, enhance_prompt_button, random_prompt_button], show_api=False)

        randomize_seed.input(lambda x: {"interactive": False if x == True else True, "__type__": "update"}, inputs=[randomize_seed], outputs=[image_seed], show_api=False)

        enhance_prompt_button.click(fn=groq_enhance_process, inputs=[text_prompt], outputs=[text_prompt], show_api=False)
        random_prompt_button.click(fn=groq_enhance_process, inputs=None, outputs=[text_prompt], show_api=False)

# MARK: Gradio LAUNCH
demo.launch(show_api=True)