Spaces:
Sleeping
Sleeping
File size: 22,825 Bytes
5fcdc9c 51cb4ac 5fcdc9c dda76b7 5fcdc9c cf8f017 5fcdc9c dda76b7 5fcdc9c da81802 51cb4ac cbc61ac dda76b7 31d86a5 85ac152 38da740 53c11ba dda76b7 e4e846b d15528d 2ad5bae a45db6b 2ad5bae f6ec4be 7a84b52 7baa314 ed521c5 2ad5bae a45db6b f6ec4be d15528d 24cec01 d15528d 24cec01 2d78e5f d15528d 24cec01 51cb4ac 5fcdc9c 14cf836 3aaa0cf 14cf836 3aaa0cf 9cf164b 51cb4ac 14cf836 5fcdc9c 2381533 5fcdc9c dda76b7 a8a102c 51cb4ac 138e3ff 5fcdc9c a8a102c 5fcdc9c a8a102c dda76b7 5106269 3c8b9ba 51cb4ac 138e3ff 5fcdc9c ccad741 5fcdc9c fa35fba 5fcdc9c 6a2ebdf 5fcdc9c dda76b7 a8a102c dda76b7 2ad5bae 5fcdc9c 2ad5bae 7a84b52 079a5bd 2ad5bae f6ec4be dda76b7 d28bceb 7298c24 a8a102c 5fcdc9c eae1e5f 8b4de75 6e3a8b1 8b4de75 5fcdc9c 0753339 5fcdc9c 0753339 5fcdc9c 2b6e4d6 0753339 51cb4ac a4ae85b b134874 baea0e2 0753339 228eaf8 51cb4ac b134874 5fcdc9c b134874 ab7f7b4 51cb4ac 5fcdc9c 2984573 d25e7b4 5fcdc9c 2287df6 5fcdc9c 2287df6 5fcdc9c 2287df6 5fcdc9c 2287df6 5fcdc9c 2287df6 5fcdc9c 2287df6 5fcdc9c 2287df6 5fcdc9c 2287df6 5fcdc9c 2287df6 5fcdc9c 2287df6 5fcdc9c 2287df6 5fcdc9c 2287df6 5fcdc9c 2287df6 5fcdc9c 2287df6 5fcdc9c 2287df6 5fcdc9c 2287df6 5fcdc9c 2287df6 5fcdc9c 2287df6 5fcdc9c 2287df6 5fcdc9c 2287df6 5fcdc9c 2287df6 5fcdc9c 2287df6 5fcdc9c 2287df6 5fcdc9c 2287df6 5fcdc9c ab7f7b4 51cb4ac b134874 51cb4ac 31d86a5 999ae97 2ac9c7b ab7f7b4 03023e5 ab7f7b4 5c8d759 24cec01 76820e8 d15528d 24cec01 d15528d 24cec01 b8ee3e0 999ae97 960ded6 24cec01 999ae97 cfc4ee2 999ae97 24cec01 76820e8 24cec01 cdad466 2d6e385 5fcdc9c 8252bd7 5fcdc9c 51cb4ac c03bccd 4d0fc21 99b81b2 3a8f910 12b2177 3a8f910 e451a28 3a8f910 e451a28 3a8f910 0dcd214 51cb4ac 5fcdc9c dda76b7 5fcdc9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 |
# import all packages
import requests
import streamlit as st
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold
# tokenizer
from transformers import AutoTokenizer, DistilBertTokenizerFast
# sequence tagging model + training-related
from transformers import DistilBertForTokenClassification, Trainer, TrainingArguments
import torch
import sys
import os
from sklearn.metrics import classification_report
from pandas import read_csv
from sklearn.linear_model import LogisticRegression
import sklearn.model_selection
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.pipeline import Pipeline, FeatureUnion
import math
# from sklearn.metrics import accuracy_score
# from sklearn.metrics import precision_recall_fscore_support
import json
import re
import numpy as np
import pandas as pd
import nltk
nltk.download("punkt")
import string
from sklearn.model_selection import train_test_split
from transformers import AutoTokenizer, Trainer, TrainingArguments, AutoModelForSequenceClassification, AutoConfig
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
import itertools
from transformers import TextClassificationPipeline, TFAutoModelForSequenceClassification, AutoTokenizer
from transformers import pipeline
import pickle
import csv
import pdfplumber
import pathlib
import shutil
import webbrowser
from streamlit.components.v1 import html
import streamlit.components.v1 as components
from PyPDF2 import PdfReader
from huggingface_hub import HfApi
import io
from datasets import load_dataset
import time
import huggingface_hub
from huggingface_hub import Repository
from datetime import datetime
import pathlib as Path
from requests import get
import urllib.request
# import gradio as gr
# from gradio import inputs, outputs
from datasets import load_dataset
from huggingface_hub import HfApi, list_models
import os
from huggingface_hub import HfFileSystem
from tensorflow.keras.models import Sequential, model_from_json
#import tensorflow_datasets as tfds
import tensorflow as tf
from tensorflow.keras.preprocessing.sequence import pad_sequences
import spacy
from tensorflow.keras.preprocessing.text import Tokenizer
#from spacy import en_core_web_lg
#import en_core_web_lg
#nlp = en_core_web_lg.load()
nlp = spacy.load('en_core_web_sm')
#tfds.disable_progress_bar()
MAX_SEQUENCE_LENGTH = 500
# dataset = load_dataset('Seetha/Visualization', streaming=True)
# df = pd.DataFrame.from_dict(dataset['train'])
# DATASET_REPO_URL = "https://huggingface.co/datasets/Seetha/Visualization"
# DATA_FILENAME = "level2.json"
#DATA_FILE = os.path.join("data", DATA_FILENAME)
DATASET_REPO_URL = "https://huggingface.co/datasets/Seetha/visual_files"
DATA_FILENAME = "detailedResults.json"
DATA_FILENAME1 = "level2.json"
HF_TOKEN = os.environ.get("HF_TOKEN")
#st.write("is none?", HF_TOKEN is None)
def main():
st.title("Text to Causal Knowledge Graph")
st.sidebar.title("Please upload your text documents in one file here:")
k=2
seed = 1
k1= 5
text_list = []
causal_sents = []
uploaded_file = None
try:
uploaded_file = st.sidebar.file_uploader("Choose a file", type = "pdf")
except:
uploaded_file = PdfReader('sample_anno.pdf')
st.error("Please upload your own PDF to be analyzed")
if uploaded_file is not None:
reader = PdfReader(uploaded_file)
for page in reader.pages:
text = page.extract_text()
text_list.append(text)
else:
st.error("Please upload your own PDF to be analyzed")
st.stop()
text_list_final = [x.replace('\n', '') for x in text_list]
text_list_final = re.sub('"', '', str(text_list_final))
sentences = nltk.sent_tokenize(text_list_final)
result =[]
for i in sentences:
result1 = i.lower()
result2 = re.sub(r'[^\w\s]','',result1)
result.append(result2)
#st.write("--- %s seconds ---" % (time.time() - start_time))
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") #bert-base-uncased
model_path = "checkpoint-2850"
model = AutoModelForSequenceClassification.from_pretrained(model_path,id2label={0:'non-causal',1:'causal'})
#st.write('sequence classification loaded')
pipe1 = pipeline("text-classification", model=model,tokenizer=tokenizer)
for sent in result:
pred = pipe1(sent)
for lab in pred:
if lab['label'] == 'causal': #causal
causal_sents.append(sent)
# st.write('causal sentence classification finished')
# st.write("--- %s seconds ---" % (time.time() - start_time))
model_name = "distilbert-base-cased"
tokenizer = DistilBertTokenizerFast.from_pretrained(model_name,low_cpu_mem_usage=True)
model_path1 = "DistilBertforTokenclassification"
model = DistilBertForTokenClassification.from_pretrained(model_path1,low_cpu_mem_usage=True) #len(unique_tags),, num_labels= 7, , id2label={0:'CT',1:'E',2:'C',3:'O'}
pipe = pipeline('ner', model=model, tokenizer=tokenizer,aggregation_strategy='simple') #grouped_entities=True
st.write('DistilBERT loaded')
sentence_pred = []
class_list = []
entity_list = []
for k in causal_sents:
pred= pipe(k)
#st.write(pred)
#st.write('preds')
for i in pred:
sentence_pred.append(k)
class_list.append(i['word'])
entity_list.append(i['entity_group'])
# st.write('causality extraction finished')
# st.write("--- %s seconds ---" % (time.time() - start_time))
# filename = 'Checkpoint-classification.sav'
# loaded_model = pickle.load(open(filename, 'rb'))
# loaded_vectorizer = pickle.load(open('vectorizefile_classification.pickle', 'rb'))
# pipeline_test_output = loaded_vectorizer.transform(class_list)
# predicted = loaded_model.predict(pipeline_test_output)
tokenizer = Tokenizer(num_words=100000)
tokenizer.fit_on_texts(class_list)
word_index = tokenizer.word_index
# text_embedding = np.zeros((len(word_index) + 1, 300))
# for word, i in word_index.items():
# text_embedding[i] = nlp(word).vector
json_file = open('model.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
loaded_model = model_from_json(loaded_model_json)
# load weights into new model
loaded_model.load_weights("model.h5")
loss = tf.keras.losses.CategoricalCrossentropy() #from_logits=True
loaded_model.compile(loss=loss,optimizer=tf.keras.optimizers.Adam(1e-4))
predictions = loaded_model.predict(pad_sequences(tokenizer.texts_to_sequences(class_list),maxlen=MAX_SEQUENCE_LENGTH))
predicted = np.argmax(predictions,axis=1)
st.write(predictions)
st.write(predicted)
# st.write('stakeholder taxonomy finished')
# st.write("--- %s seconds ---" % (time.time() - start_time))
pred1 = predicted
level0 = []
count =0
for i in predicted:
if i == 3:
level0.append('Non-Performance')
count +=1
else:
level0.append('Performance')
count +=1
list_pred = {0: 'Customers',1:'Employees',2:'Investors',3:'Non-performance',4:'Society',5:'Unclassified'}
pred_val = [list_pred[i] for i in pred1]
#print('count',count)
for ind,(sent,preds) in enumerate(zip(class_list,pred_val)):
if 'customers' in sent or 'client' in sent or 'consumer' in sent or 'user' in sent:
pred_val[ind] = 'Customers'
elif 'investor' in sent or 'finance' in sent or 'shareholder' in sent or 'stockholder' in sent or 'owners' in sent:
pred_val[ind] = 'Investors'
elif 'employee' in sent or 'worker' in sent or 'staff' in sent:
pred_val[ind] = 'Employees'
elif 'society' in sent or 'societal' in sent or 'social responsib*' in sent or 'social performance' in sent or 'community' in sent:
pred_val[ind] = 'Society'
sent_id, unique = pd.factorize(sentence_pred)
final_list = pd.DataFrame(
{'Id': sent_id,
'Fullsentence': sentence_pred,
'Component': class_list,
'causeOrEffect': entity_list,
'Labellevel1': level0,
'Labellevel2': pred_val
})
s = final_list['Component'].shift(-1)
m = s.str.startswith('##', na=False)
final_list.loc[m, 'Component'] += (' ' + s[m])
final_list1 = final_list[~final_list['Component'].astype(str).str.startswith('##')]
li = []
uni = final_list1['Id'].unique()
for i in uni:
df_new = final_list1[final_list1['Id'] == i]
uni1 = df_new['Id'].unique()
# if 'E' not in df_new.values:
# li.append(uni1)
# out = np.concatenate(li).ravel()
# li_pan = pd.DataFrame(out,columns=['Id'])
# df3 = pd.merge(final_list1, li_pan[['Id']], on='Id', how='left', indicator=True) \
# .query("_merge == 'left_only'") \
# .drop("_merge",axis=1)
df3 = final_list1
#df = df3.groupby(['Id','Fullsentence','causeOrEffect', 'Labellevel1', 'Labellevel2'])['Component'].apply(', '.join).reset_index()
#st.write(df)
#df = df3
df3["causeOrEffect"].replace({"C": "cause", "E": "effect"}, inplace=True)
df_final = df3[df3['causeOrEffect'] != 'CT']
df3['New string'] = df_final['Component'].replace(r'[##]+', ' ', regex=True)
df_final = df_final.drop("Component",axis=1)
df_final.insert(2, "Component", df3['New string'], True)
df_final1 = df_final[df_final['Component'].str.split().str.len().gt(1)]
#st.write(df_final[df_final['Component'].str.len() != 1])
#df_final1.to_csv('predictions.csv')
# buffer = io.BytesIO()
# with pd.ExcelWriter(buffer, engine="xlsxwriter") as writer:
# df_final.to_excel(writer, sheet_name="Sheet1", index=False)
# writer.close()
count_NP_NP = 0
count_NP_investor = 0
count_NP_customer = 0
count_NP_employees = 0
count_NP_society = 0
count_inv_np = 0
count_inv_investor = 0
count_inv_customer = 0
count_inv_employee = 0
count_inv_society = 0
count_cus_np = 0
count_cus_investor = 0
count_cus_customer = 0
count_cus_employee = 0
count_cus_society = 0
count_emp_np = 0
count_emp_investor = 0
count_emp_customer = 0
count_emp_employee = 0
count_emp_society = 0
count_soc_np = 0
count_soc_investor = 0
count_soc_customer = 0
count_soc_employee = 0
count_soc_society = 0
for i in range(0,df_final['Id'].max()):
j = df_final.loc[df_final['Id'] == i]
cause_tab = j.loc[j['causeOrEffect'] == 'cause']
effect_tab = j.loc[j['causeOrEffect'] == 'effect']
cause_coun_NP = (cause_tab.Labellevel2 == 'Non-performance').sum()
effect_coun_NP = (effect_tab.Labellevel2 == 'Non-performance').sum()
if (cause_coun_NP > 0) and (effect_coun_NP > 0):
count_NP = cause_coun_NP if cause_coun_NP >= effect_coun_NP else effect_coun_NP
else:
count_NP = 0
effect_NP_inv = (effect_tab.Labellevel2 == 'Investors').sum()
if (cause_coun_NP > 0) and (effect_NP_inv > 0):
count_NP_inv = cause_coun_NP if cause_coun_NP >= effect_NP_inv else effect_NP_inv
else:
count_NP_inv = 0
effect_NP_cus = (effect_tab.Labellevel2 == 'Customers').sum()
if (cause_coun_NP > 0) and (effect_NP_cus > 0):
count_NP_cus = cause_coun_NP if cause_coun_NP >= effect_NP_cus else effect_NP_cus
else:
count_NP_cus = 0
effect_NP_emp = (effect_tab.Labellevel2 == 'Employees').sum()
if (cause_coun_NP > 0) and (effect_NP_emp > 0):
count_NP_emp = cause_coun_NP if cause_coun_NP >= effect_NP_emp else effect_NP_emp
else:
count_NP_emp = 0
effect_NP_soc = (effect_tab.Labellevel2 == 'Society').sum()
if (cause_coun_NP > 0) and (effect_NP_soc > 0):
count_NP_soc = cause_coun_NP if cause_coun_NP >= effect_NP_soc else effect_NP_soc
else:
count_NP_soc = 0
cause_coun_inv = (cause_tab.Labellevel2 == 'Investors').sum()
effect_coun_inv = (effect_tab.Labellevel2 == 'Non-performance').sum()
if (cause_coun_inv > 0) and (effect_coun_inv > 0):
count_NP_inv = cause_coun_inv if cause_coun_inv >= effect_coun_inv else effect_coun_inv
else:
count_NP_inv = 0
effect_inv_inv = (effect_tab.Labellevel2 == 'Investors').sum()
if (cause_coun_inv > 0) and (effect_inv_inv > 0):
count_inv_inv = cause_coun_inv if cause_coun_inv >= effect_inv_inv else effect_inv_inv
else:
count_inv_inv = 0
effect_inv_cus = (effect_tab.Labellevel2 == 'Customers').sum()
if (cause_coun_inv > 0) and (effect_inv_cus > 0):
count_inv_cus = cause_coun_inv if cause_coun_inv >= effect_inv_cus else effect_inv_cus
else:
count_inv_cus = 0
effect_inv_emp = (effect_tab.Labellevel2 == 'Employees').sum()
if (cause_coun_inv > 0) and (effect_inv_emp > 0):
count_inv_emp = cause_coun_inv if cause_coun_inv >= effect_inv_emp else effect_inv_emp
else:
count_inv_emp = 0
effect_inv_soc = (effect_tab.Labellevel2 == 'Society').sum()
if (cause_coun_inv > 0) and (effect_inv_soc > 0):
count_inv_soc = cause_coun_inv if cause_coun_inv >= effect_inv_soc else effect_inv_soc
else:
count_inv_soc = 0
cause_coun_cus = (cause_tab.Labellevel2 == 'Customers').sum()
effect_coun_cus = (effect_tab.Labellevel2 == 'Non-performance').sum()
if (cause_coun_cus > 0) and (effect_coun_cus > 0):
count_NP_cus = cause_coun_cus if cause_coun_cus >= effect_coun_cus else effect_coun_cus
else:
count_NP_cus = 0
effect_cus_inv = (effect_tab.Labellevel2 == 'Investors').sum()
if (cause_coun_cus > 0) and (effect_cus_inv > 0):
count_cus_inv = cause_coun_cus if cause_coun_cus >= effect_cus_inv else effect_cus_inv
else:
count_cus_inv = 0
effect_cus_cus = (effect_tab.Labellevel2 == 'Customers').sum()
if (cause_coun_cus > 0) and (effect_cus_cus > 0):
count_cus_cus = cause_coun_cus if cause_coun_cus >= effect_cus_cus else effect_cus_cus
else:
count_cus_cus = 0
effect_cus_emp = (effect_tab.Labellevel2 == 'Employees').sum()
if (cause_coun_cus > 0) and (effect_cus_emp > 0):
count_cus_emp = cause_coun_cus if cause_coun_cus >= effect_cus_emp else effect_cus_emp
else:
count_cus_emp = 0
effect_cus_soc = (effect_tab.Labellevel2 == 'Society').sum()
if (cause_coun_cus > 0) and (effect_cus_soc > 0):
count_cus_soc = cause_coun_cus if cause_coun_cus >= effect_cus_soc else effect_cus_soc
else:
count_cus_soc = 0
cause_coun_emp = (cause_tab.Labellevel2 == 'Employees').sum()
effect_coun_emp = (effect_tab.Labellevel2 == 'Non-performance').sum()
if (cause_coun_emp > 0) and (effect_coun_emp > 0):
count_NP_emp = cause_coun_emp if cause_coun_emp >= effect_coun_emp else effect_coun_emp
else:
count_NP_emp = 0
effect_emp_inv = (effect_tab.Labellevel2 == 'Investors').sum()
if (cause_coun_emp > 0) and (effect_emp_inv > 0):
count_emp_inv = cause_coun_emp if cause_coun_emp >= effect_emp_inv else effect_emp_inv
else:
count_emp_inv = 0
effect_emp_cus = (effect_tab.Labellevel2 == 'Customers').sum()
if (cause_coun_emp > 0) and (effect_emp_cus > 0):
count_emp_cus = cause_coun_emp if cause_coun_emp >= effect_emp_cus else effect_emp_cus
else:
count_emp_cus = 0
effect_emp_emp = (effect_tab.Labellevel2 == 'Employees').sum()
if (cause_coun_emp > 0) and (effect_emp_emp > 0):
count_emp_emp = cause_coun_emp if cause_coun_emp >= effect_emp_emp else effect_emp_emp
else:
count_emp_emp = 0
effect_emp_soc = (effect_tab.Labellevel2 == 'Society').sum()
if (cause_coun_emp > 0) and (effect_emp_soc > 0):
count_emp_soc = cause_coun_emp if cause_coun_emp >= effect_emp_soc else effect_emp_soc
else:
count_emp_soc = 0
cause_coun_soc = (cause_tab.Labellevel2 == 'Society').sum()
effect_coun_soc = (effect_tab.Labellevel2 == 'Non-performance').sum()
if (cause_coun_soc > 0) and (effect_coun_soc > 0):
count_NP_soc = cause_coun_soc if cause_coun_soc >= effect_coun_soc else effect_coun_soc
else:
count_NP_soc = 0
effect_soc_inv = (effect_tab.Labellevel2 == 'Investors').sum()
if (cause_coun_soc > 0) and (effect_soc_inv > 0):
count_soc_inv = cause_coun_soc if cause_coun_soc >= effect_soc_inv else effect_soc_inv
else:
count_soc_inv = 0
effect_soc_cus = (effect_tab.Labellevel2 == 'Customers').sum()
if (cause_coun_soc > 0) and (effect_soc_cus > 0):
count_soc_cus = cause_coun_soc if cause_coun_soc >= effect_soc_cus else effect_soc_cus
else:
count_soc_cus = 0
effect_soc_emp = (effect_tab.Labellevel2 == 'Employees').sum()
if (cause_coun_soc > 0) and (effect_soc_emp > 0):
count_soc_emp = cause_coun_soc if cause_coun_soc >= effect_soc_emp else effect_soc_emp
else:
count_soc_emp = 0
effect_soc_soc = (effect_tab.Labellevel2 == 'Society').sum()
if (cause_coun_soc > 0) and (effect_soc_soc > 0):
count_soc_soc = cause_coun_soc if cause_coun_soc >= effect_soc_soc else effect_soc_soc
else:
count_soc_soc = 0
count_NP_NP = count_NP_NP + count_NP
count_NP_investor = count_NP_investor + count_NP_inv
count_NP_customer = count_NP_customer + count_NP_cus
count_NP_employees = count_NP_employees + count_NP_emp
count_NP_society = count_NP_society + count_NP_soc
count_inv_np = count_inv_np + count_NP_inv
count_inv_investor = count_inv_investor + count_inv_inv
count_inv_customer = count_inv_customer + count_inv_cus
count_inv_employee = count_inv_employee + count_inv_emp
count_inv_society = count_inv_society + count_inv_soc
count_cus_np = count_cus_np + count_NP_cus
count_cus_investor = count_cus_investor + count_cus_inv
count_cus_customer = count_cus_customer + count_cus_cus
count_cus_employee = count_cus_employee + count_cus_emp
count_cus_society = count_cus_society + count_cus_soc
count_emp_np = count_emp_np + count_NP_emp
count_emp_investor = count_emp_investor + count_emp_inv
count_emp_customer = count_emp_customer + count_emp_cus
count_emp_employee = count_emp_employee + count_emp_emp
count_emp_society = count_emp_society + count_emp_soc
count_soc_np = count_soc_np + count_NP_soc
count_soc_investor = count_soc_investor + count_soc_inv
count_soc_customer = count_soc_customer + count_soc_cus
count_soc_employee = count_soc_employee + count_soc_emp
count_soc_society = count_soc_society + count_soc_soc
df_tab = pd.DataFrame(columns = ['Non-performance', 'Investors', 'Customers', 'Employees', 'Society'],index=['Non-performance', 'Investors', 'Customers', 'Employees', 'Society'], dtype=object)
df_tab.loc['Non-performance'] = [count_NP_NP, count_NP_investor, count_NP_customer, count_NP_employees, count_NP_society]
df_tab.loc['Investors'] = [count_inv_np, count_inv_investor, count_inv_customer, count_inv_employee, count_inv_society]
df_tab.loc['Customers'] = [count_cus_np, count_cus_investor, count_cus_customer, count_cus_employee, count_cus_society]
df_tab.loc['Employees'] = [count_emp_np, count_emp_investor, count_emp_customer, count_emp_employee, count_emp_society]
df_tab.loc['Society'] = [count_soc_np, count_soc_investor, count_soc_customer, count_soc_employee, count_soc_society]
# df_tab = pd.DataFrame({
# 'Non-performance': [count_NP_NP, count_NP_investor, count_NP_customer, count_NP_employees, count_NP_society],
# 'Investors': [count_inv_np, count_inv_investor, count_inv_customer, count_inv_employee, count_inv_society],
# 'Customers': [count_cus_np, count_cus_investor, count_cus_customer, count_cus_employee, count_cus_society],
# 'Employees': [count_emp_np, count_emp_investor, count_emp_customer, count_emp_employee, count_emp_society],
# 'Society': [count_soc_np, count_soc_investor, count_soc_customer, count_soc_employee, count_soc_society]},
# index=['Non-performance', 'Investors', 'Customers', 'Employees', 'Society'])
#df_tab.to_csv('final_data.csv')
buffer = io.BytesIO()
with pd.ExcelWriter(buffer, engine="xlsxwriter") as writer:
df_tab.to_excel(writer,sheet_name="count_result",index=False)
df_final1.to_excel(writer,sheet_name="Detailed_results",index=False)
writer.close()
#df = pd.read_csv('final_data.csv', index_col=0)
#474-515
# Convert to JSON format
json_data = []
for row in df_tab.index:
for col in df_tab.columns:
json_data.append({
'source': row,
'target': col,
'value': int(df_tab.loc[row, col])
})
HfApi().delete_file(path_in_repo = DATA_FILENAME1 ,repo_id = 'Seetha/visual_files',token= HF_TOKEN,repo_type='dataset')
#st.write('file-deleted')
fs = HfFileSystem(token=HF_TOKEN)
with fs.open('datasets/Seetha/visual_files/level2.json', 'w') as f:
json.dump(json_data, f)
df_final1.to_csv('predictions.csv')
csv_file = "predictions.csv"
json_file = "detailedResults.json"
# Open the CSV file and read the data
with open(csv_file, "r") as f:
csv_data = csv.DictReader(f)
# # Convert the CSV data to a list of dictionaries
data_list = []
for row in csv_data:
data_list.append(dict(row))
# # Convert the list of dictionaries to JSON
json_data = json.dumps(data_list)
HfApi().delete_file(path_in_repo = DATA_FILENAME ,repo_id = 'Seetha/visual_files',token= HF_TOKEN,repo_type='dataset')
#st.write('file2-deleted')
with fs.open('datasets/Seetha/visual_files/detailedResults.json','w') as fi:
#data = json.load(fi)
fi.write(json_data)
def convert_df(df):
#IMPORTANT: Cache the conversion to prevent computation on every rerun
return df.to_csv().encode('utf-8')
csv1 = convert_df(df_final1.astype(str))
csv2 = convert_df(df_tab.astype(str))
with st.container():
st.download_button(label="Download the result table",data=buffer,file_name="t2cg_outputs.xlsx",mime="application/vnd.ms-excel")
st.markdown('<a href="https://huggingface.co/spaces/Seetha/visual-knowledgegraph" target="_blank">Click this link in a separate tab to view knowledge graph</a>', unsafe_allow_html=True)
# st.download_button(label="Download the detailed result table_csv",data=csv1,file_name='results.csv',mime='text/csv')
# st.download_button(label="Download the result table_csv",data=csv2,file_name='final_data.csv',mime='text/csv')
#with st.container():
# Execute your app
#st.title("Visualization example")
# components.html(source_code)
#html(my_html)
#webbrowser.open('https://huggingface.co/spaces/Seetha/visual-knowledgegraph')
# # embed streamlit docs in a streamlit app
# #components.iframe("https://webpages.charlotte.edu/ltotapal/")
if __name__ == '__main__':
start_time = time.time()
main()
|