Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -110,7 +110,7 @@ def main():
|
|
110 |
|
111 |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") #bert-base-uncased
|
112 |
|
113 |
-
model_path = "
|
114 |
|
115 |
model = AutoModelForSequenceClassification.from_pretrained(model_path,id2label={0:'non-causal',1:'causal'})
|
116 |
|
@@ -126,7 +126,7 @@ def main():
|
|
126 |
|
127 |
|
128 |
|
129 |
-
model_path1 = "
|
130 |
|
131 |
model = DistilBertForTokenClassification.from_pretrained(model_path1) #len(unique_tags),, num_labels= 7, , id2label={0:'CT',1:'E',2:'C',3:'O'}
|
132 |
pipe = pipeline('ner', model=model, tokenizer=tokenizer,aggregation_strategy='simple') #grouped_entities=True
|
|
|
110 |
|
111 |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") #bert-base-uncased
|
112 |
|
113 |
+
model_path = "checkpoint-2850"
|
114 |
|
115 |
model = AutoModelForSequenceClassification.from_pretrained(model_path,id2label={0:'non-causal',1:'causal'})
|
116 |
|
|
|
126 |
|
127 |
|
128 |
|
129 |
+
model_path1 = "DistilBertforTokenclassification"
|
130 |
|
131 |
model = DistilBertForTokenClassification.from_pretrained(model_path1) #len(unique_tags),, num_labels= 7, , id2label={0:'CT',1:'E',2:'C',3:'O'}
|
132 |
pipe = pipeline('ner', model=model, tokenizer=tokenizer,aggregation_strategy='simple') #grouped_entities=True
|