Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,10 +8,7 @@ from sklearn.model_selection import KFold
|
|
8 |
from transformers import AutoTokenizer, DistilBertTokenizerFast
|
9 |
# sequence tagging model + training-related
|
10 |
from transformers import DistilBertForTokenClassification, Trainer, TrainingArguments
|
11 |
-
import numpy as np
|
12 |
-
import pandas as pd
|
13 |
import torch
|
14 |
-
import json
|
15 |
import sys
|
16 |
import os
|
17 |
from sklearn.metrics import classification_report
|
@@ -22,28 +19,22 @@ from sklearn.feature_extraction.text import TfidfTransformer
|
|
22 |
from sklearn.feature_extraction.text import CountVectorizer
|
23 |
from sklearn.pipeline import Pipeline, FeatureUnion
|
24 |
import math
|
25 |
-
from sklearn.metrics import accuracy_score
|
26 |
-
from sklearn.metrics import precision_recall_fscore_support
|
27 |
-
from sklearn.model_selection import train_test_split
|
28 |
import json
|
29 |
import re
|
30 |
import numpy as np
|
31 |
import pandas as pd
|
32 |
-
import re
|
33 |
import nltk
|
34 |
nltk.download("punkt")
|
35 |
import string
|
36 |
from sklearn.model_selection import train_test_split
|
37 |
from transformers import AutoTokenizer, Trainer, TrainingArguments, AutoModelForSequenceClassification, AutoConfig
|
38 |
-
import torch
|
39 |
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
|
40 |
import itertools
|
41 |
-
import json
|
42 |
-
import glob
|
43 |
from transformers import TextClassificationPipeline, TFAutoModelForSequenceClassification, AutoTokenizer
|
44 |
from transformers import pipeline
|
45 |
-
import pickle
|
46 |
-
import urllib.request
|
47 |
import csv
|
48 |
import pdfplumber
|
49 |
import pathlib
|
@@ -55,6 +46,7 @@ from PyPDF2 import PdfReader
|
|
55 |
from huggingface_hub import HfApi
|
56 |
import io
|
57 |
from datasets import load_dataset
|
|
|
58 |
|
59 |
import huggingface_hub
|
60 |
from huggingface_hub import Repository
|
@@ -62,8 +54,8 @@ from datetime import datetime
|
|
62 |
import pathlib as Path
|
63 |
from requests import get
|
64 |
import urllib.request
|
65 |
-
import gradio as gr
|
66 |
-
from gradio import inputs, outputs
|
67 |
from datasets import load_dataset
|
68 |
from huggingface_hub import HfApi, list_models
|
69 |
import os
|
@@ -130,7 +122,8 @@ def main():
|
|
130 |
result1 = i.lower()
|
131 |
result2 = re.sub(r'[^\w\s]','',result1)
|
132 |
result.append(result2)
|
133 |
-
|
|
|
134 |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") #bert-base-uncased
|
135 |
|
136 |
model_path = "checkpoint-2850"
|
@@ -144,6 +137,9 @@ def main():
|
|
144 |
if lab['label'] == 'causal': #causal
|
145 |
causal_sents.append(sent)
|
146 |
|
|
|
|
|
|
|
147 |
model_name = "distilbert-base-cased"
|
148 |
tokenizer = DistilBertTokenizerFast.from_pretrained(model_name)
|
149 |
|
@@ -165,7 +161,10 @@ def main():
|
|
165 |
sentence_pred.append(k)
|
166 |
class_list.append(i['word'])
|
167 |
entity_list.append(i['entity_group'])
|
168 |
-
|
|
|
|
|
|
|
169 |
# filename = 'Checkpoint-classification.sav'
|
170 |
# loaded_model = pickle.load(open(filename, 'rb'))
|
171 |
# loaded_vectorizer = pickle.load(open('vectorizefile_classification.pickle', 'rb'))
|
@@ -191,6 +190,9 @@ def main():
|
|
191 |
|
192 |
predictions = loaded_model.predict(pad_sequences(tokenizer.texts_to_sequences(class_list),maxlen=MAX_SEQUENCE_LENGTH))
|
193 |
predicted = np.argmax(predictions,axis=1)
|
|
|
|
|
|
|
194 |
pred1 = predicted
|
195 |
level0 = []
|
196 |
count =0
|
@@ -574,4 +576,5 @@ def main():
|
|
574 |
|
575 |
|
576 |
if __name__ == '__main__':
|
|
|
577 |
main()
|
|
|
8 |
from transformers import AutoTokenizer, DistilBertTokenizerFast
|
9 |
# sequence tagging model + training-related
|
10 |
from transformers import DistilBertForTokenClassification, Trainer, TrainingArguments
|
|
|
|
|
11 |
import torch
|
|
|
12 |
import sys
|
13 |
import os
|
14 |
from sklearn.metrics import classification_report
|
|
|
19 |
from sklearn.feature_extraction.text import CountVectorizer
|
20 |
from sklearn.pipeline import Pipeline, FeatureUnion
|
21 |
import math
|
22 |
+
# from sklearn.metrics import accuracy_score
|
23 |
+
# from sklearn.metrics import precision_recall_fscore_support
|
|
|
24 |
import json
|
25 |
import re
|
26 |
import numpy as np
|
27 |
import pandas as pd
|
|
|
28 |
import nltk
|
29 |
nltk.download("punkt")
|
30 |
import string
|
31 |
from sklearn.model_selection import train_test_split
|
32 |
from transformers import AutoTokenizer, Trainer, TrainingArguments, AutoModelForSequenceClassification, AutoConfig
|
|
|
33 |
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
|
34 |
import itertools
|
|
|
|
|
35 |
from transformers import TextClassificationPipeline, TFAutoModelForSequenceClassification, AutoTokenizer
|
36 |
from transformers import pipeline
|
37 |
+
import pickle
|
|
|
38 |
import csv
|
39 |
import pdfplumber
|
40 |
import pathlib
|
|
|
46 |
from huggingface_hub import HfApi
|
47 |
import io
|
48 |
from datasets import load_dataset
|
49 |
+
import time
|
50 |
|
51 |
import huggingface_hub
|
52 |
from huggingface_hub import Repository
|
|
|
54 |
import pathlib as Path
|
55 |
from requests import get
|
56 |
import urllib.request
|
57 |
+
# import gradio as gr
|
58 |
+
# from gradio import inputs, outputs
|
59 |
from datasets import load_dataset
|
60 |
from huggingface_hub import HfApi, list_models
|
61 |
import os
|
|
|
122 |
result1 = i.lower()
|
123 |
result2 = re.sub(r'[^\w\s]','',result1)
|
124 |
result.append(result2)
|
125 |
+
|
126 |
+
print("--- %s seconds ---" % (time.time() - start_time))
|
127 |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") #bert-base-uncased
|
128 |
|
129 |
model_path = "checkpoint-2850"
|
|
|
137 |
if lab['label'] == 'causal': #causal
|
138 |
causal_sents.append(sent)
|
139 |
|
140 |
+
st.write('causal sentence classification finished')
|
141 |
+
st.write("--- %s seconds ---" % (time.time() - start_time))
|
142 |
+
|
143 |
model_name = "distilbert-base-cased"
|
144 |
tokenizer = DistilBertTokenizerFast.from_pretrained(model_name)
|
145 |
|
|
|
161 |
sentence_pred.append(k)
|
162 |
class_list.append(i['word'])
|
163 |
entity_list.append(i['entity_group'])
|
164 |
+
|
165 |
+
st.write('causality extraction finished')
|
166 |
+
st.write("--- %s seconds ---" % (time.time() - start_time))
|
167 |
+
|
168 |
# filename = 'Checkpoint-classification.sav'
|
169 |
# loaded_model = pickle.load(open(filename, 'rb'))
|
170 |
# loaded_vectorizer = pickle.load(open('vectorizefile_classification.pickle', 'rb'))
|
|
|
190 |
|
191 |
predictions = loaded_model.predict(pad_sequences(tokenizer.texts_to_sequences(class_list),maxlen=MAX_SEQUENCE_LENGTH))
|
192 |
predicted = np.argmax(predictions,axis=1)
|
193 |
+
|
194 |
+
st.write('stakeholder taxonomy finished')
|
195 |
+
st.write("--- %s seconds ---" % (time.time() - start_time))
|
196 |
pred1 = predicted
|
197 |
level0 = []
|
198 |
count =0
|
|
|
576 |
|
577 |
|
578 |
if __name__ == '__main__':
|
579 |
+
start_time = time.time()
|
580 |
main()
|