File size: 1,731 Bytes
bc8665f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import torch
from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer
import soundfile as sf
import librosa
import numpy as np
from flask import Flask, request, jsonify
import gradio as gr

app = Flask(__name__)

# Load pre-trained model and tokenizer from Hugging Face
model_name = "facebook/wav2vec2-large-960h"
tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_name)
model = Wav2Vec2ForCTC.from_pretrained(model_name)

def load_audio(file_path):
    audio, _ = librosa.load(file_path, sr=16000)
    return audio

def clone_voice(audio):
    input_values = tokenizer(audio, return_tensors="pt").input_values
    logits = model(input_values).logits
    predicted_ids = torch.argmax(logits, dim=-1)
    transcription = tokenizer.decode(predicted_ids[0])

    # Placeholder for voice conversion logic
    converted_audio = np.array(audio)  # Replace with actual conversion logic

    output_path = "song_output/output.wav"
    sf.write(output_path, converted_audio, 16000)
    return output_path

@app.route('/clone-voice', methods=['POST'])
def clone_voice_endpoint():
    if 'file' not in request.files:
        return jsonify({"error": "No file provided"}), 400
    
    file = request.files['file']
    file_path = "input.wav"
    file.save(file_path)
    
    audio = load_audio(file_path)
    output_path = clone_voice(audio)
    
    return jsonify({"output_path": output_path}), 200

def main_interface(audio):
    output_path = clone_voice(audio)
    return output_path

iface = gr.Interface(fn=main_interface, 
                     inputs=gr.Audio(source="upload", type="numpy"), 
                     outputs=gr.Audio(type="file"))

if __name__ == "__main__":
    iface.launch(server_name="0.0.0.0", server_port=5000)