Spaces:
Runtime error
Runtime error
File size: 1,731 Bytes
bc8665f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import torch
from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer
import soundfile as sf
import librosa
import numpy as np
from flask import Flask, request, jsonify
import gradio as gr
app = Flask(__name__)
# Load pre-trained model and tokenizer from Hugging Face
model_name = "facebook/wav2vec2-large-960h"
tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_name)
model = Wav2Vec2ForCTC.from_pretrained(model_name)
def load_audio(file_path):
audio, _ = librosa.load(file_path, sr=16000)
return audio
def clone_voice(audio):
input_values = tokenizer(audio, return_tensors="pt").input_values
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = tokenizer.decode(predicted_ids[0])
# Placeholder for voice conversion logic
converted_audio = np.array(audio) # Replace with actual conversion logic
output_path = "song_output/output.wav"
sf.write(output_path, converted_audio, 16000)
return output_path
@app.route('/clone-voice', methods=['POST'])
def clone_voice_endpoint():
if 'file' not in request.files:
return jsonify({"error": "No file provided"}), 400
file = request.files['file']
file_path = "input.wav"
file.save(file_path)
audio = load_audio(file_path)
output_path = clone_voice(audio)
return jsonify({"output_path": output_path}), 200
def main_interface(audio):
output_path = clone_voice(audio)
return output_path
iface = gr.Interface(fn=main_interface,
inputs=gr.Audio(source="upload", type="numpy"),
outputs=gr.Audio(type="file"))
if __name__ == "__main__":
iface.launch(server_name="0.0.0.0", server_port=5000) |