Spaces:
Runtime error
Runtime error
Create v2 App.py
Browse files
v2 App.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
3 |
+
|
4 |
+
class AdvancedVoiceCloningModel(GPT2LMHeadModel):
|
5 |
+
def __init__(self, config):
|
6 |
+
super().__init__(config)
|
7 |
+
# Add additional parameters for controlling wetness or other advanced options
|
8 |
+
|
9 |
+
def forward(self, input_ids, **kwargs):
|
10 |
+
# Implement forward pass with additional parameters
|
11 |
+
outputs = super().forward(input_ids, **kwargs)
|
12 |
+
# Apply adjustments based on advanced options
|
13 |
+
|
14 |
+
return outputs
|
15 |
+
|
16 |
+
# Example usage
|
17 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
18 |
+
model = AdvancedVoiceCloningModel.from_pretrained('gpt2')
|
19 |
+
|
20 |
+
input_text = "Hello, how are you?"
|
21 |
+
input_ids = tokenizer.encode(input_text, return_tensors='pt')
|
22 |
+
|
23 |
+
# Generate synthesized voice with advanced options
|
24 |
+
output = model.generate(input_ids, max_length=100)
|
25 |
+
decoded_output = tokenizer.decode(output[0], skip_special_tokens=True)
|
26 |
+
|
27 |
+
print(decoded_output)
|