import torch from transformers import GPT2Tokenizer, GPT2LMHeadModel class AdvancedVoiceCloningModel(GPT2LMHeadModel): def __init__(self, config): super().__init__(config) # Add additional parameters for controlling wetness or other advanced options def forward(self, input_ids, **kwargs): # Implement forward pass with additional parameters outputs = super().forward(input_ids, **kwargs) # Apply adjustments based on advanced options return outputs # Example usage tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = AdvancedVoiceCloningModel.from_pretrained('gpt2') input_text = "Hello, how are you?" input_ids = tokenizer.encode(input_text, return_tensors='pt') # Generate synthesized voice with advanced options output = model.generate(input_ids, max_length=100) decoded_output = tokenizer.decode(output[0], skip_special_tokens=True) print(decoded_output)