|
from typing import Tuple |
|
|
|
import requests |
|
import random |
|
import numpy as np |
|
import gradio as gr |
|
import spaces |
|
import torch |
|
from PIL import Image |
|
from diffusers import FluxInpaintPipeline |
|
from huggingface_hub import login |
|
import os |
|
import time |
|
from gradio_imageslider import ImageSlider |
|
|
|
|
|
MARKDOWN = """ |
|
# FLUX.1 Inpainting with lora |
|
""" |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
IMAGE_SIZE = 1024 |
|
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" |
|
HF_TOKEN = os.environ.get("HF_TOKEN") |
|
|
|
login(token=HF_TOKEN) |
|
|
|
|
|
|
|
class calculateDuration: |
|
def __init__(self, activity_name=""): |
|
self.activity_name = activity_name |
|
|
|
def __enter__(self): |
|
self.start_time = time.time() |
|
self.start_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.start_time)) |
|
print(f"Activity: {self.activity_name}, Start time: {self.start_time_formatted}") |
|
return self |
|
|
|
def __exit__(self, exc_type, exc_value, traceback): |
|
self.end_time = time.time() |
|
self.elapsed_time = self.end_time - self.start_time |
|
self.end_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.end_time)) |
|
|
|
if self.activity_name: |
|
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") |
|
else: |
|
print(f"Elapsed time: {self.elapsed_time:.6f} seconds") |
|
|
|
print(f"Activity: {self.activity_name}, End time: {self.start_time_formatted}") |
|
|
|
|
|
def remove_background(image: Image.Image, threshold: int = 50) -> Image.Image: |
|
image = image.convert("RGBA") |
|
data = image.getdata() |
|
new_data = [] |
|
for item in data: |
|
avg = sum(item[:3]) / 3 |
|
if avg < threshold: |
|
new_data.append((0, 0, 0, 0)) |
|
else: |
|
new_data.append(item) |
|
|
|
image.putdata(new_data) |
|
return image |
|
|
|
pipe = FluxInpaintPipeline.from_pretrained( |
|
"black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE) |
|
|
|
|
|
def resize_image_dimensions( |
|
original_resolution_wh: Tuple[int, int], |
|
maximum_dimension: int = IMAGE_SIZE |
|
) -> Tuple[int, int]: |
|
width, height = original_resolution_wh |
|
|
|
|
|
|
|
|
|
|
|
|
|
if width > height: |
|
scaling_factor = maximum_dimension / width |
|
else: |
|
scaling_factor = maximum_dimension / height |
|
|
|
new_width = int(width * scaling_factor) |
|
new_height = int(height * scaling_factor) |
|
|
|
new_width = new_width - (new_width % 32) |
|
new_height = new_height - (new_height % 32) |
|
|
|
return new_width, new_height |
|
|
|
|
|
@spaces.GPU(duration=100) |
|
def process( |
|
input_image_editor: dict, |
|
lora_path: str, |
|
lora_weights: str, |
|
lora_scale: float, |
|
trigger_word: str, |
|
input_text: str, |
|
seed_slicer: int, |
|
randomize_seed_checkbox: bool, |
|
strength_slider: float, |
|
num_inference_steps_slider: int, |
|
progress=gr.Progress(track_tqdm=True) |
|
): |
|
if not input_text: |
|
gr.Info("Please enter a text prompt.") |
|
return None, None |
|
|
|
image = input_image_editor['background'] |
|
mask = input_image_editor['layers'][0] |
|
|
|
if not image: |
|
gr.Info("Please upload an image.") |
|
return None, None |
|
|
|
if not mask: |
|
gr.Info("Please draw a mask on the image.") |
|
return None, None |
|
|
|
with calculateDuration("resize image"): |
|
width, height = resize_image_dimensions(original_resolution_wh=image.size) |
|
resized_image = image.resize((width, height), Image.LANCZOS) |
|
resized_mask = mask.resize((width, height), Image.LANCZOS) |
|
|
|
with calculateDuration("load lora"): |
|
pipe.load_lora_weights(lora_path, weight_name=lora_weights) |
|
|
|
if randomize_seed_checkbox: |
|
seed_slicer = random.randint(0, MAX_SEED) |
|
generator = torch.Generator().manual_seed(seed_slicer) |
|
|
|
with calculateDuration("run pipe"): |
|
result = pipe( |
|
prompt=f"{input_text} {trigger_word}", |
|
image=resized_image, |
|
mask_image=resized_mask, |
|
width=width, |
|
height=height, |
|
strength=strength_slider, |
|
generator=generator, |
|
num_inference_steps=num_inference_steps_slider, |
|
joint_attention_kwargs={"scale": lora_scale}, |
|
).images[0] |
|
|
|
return [resized_image, result], resized_mask |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown(MARKDOWN) |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image_editor_component = gr.ImageEditor( |
|
label='Image', |
|
type='pil', |
|
sources=["upload", "webcam"], |
|
image_mode='RGB', |
|
layers=False, |
|
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed")) |
|
|
|
|
|
with gr.Accordion("Prompt Settings", open=True): |
|
|
|
input_text_component = gr.Textbox( |
|
label="Inpaint prompt", |
|
show_label=True, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
) |
|
trigger_word = gr.Textbox( |
|
label="Lora trigger word", |
|
show_label=True, |
|
max_lines=1, |
|
placeholder="Enter your lora trigger word here", |
|
value="a photo of TOK" |
|
|
|
) |
|
|
|
submit_button_component = gr.Button( |
|
value='Submit', variant='primary', scale=0) |
|
|
|
with gr.Accordion("Lora Settings", open=True): |
|
lora_path = gr.Textbox( |
|
label="Lora path", |
|
show_label=True, |
|
max_lines=1, |
|
placeholder="Enter your lora's model path", |
|
) |
|
lora_weights = gr.Textbox( |
|
label="Lora weights", |
|
show_label=True, |
|
max_lines=1, |
|
placeholder="Enter your lora weights name", |
|
) |
|
lora_scale = gr.Slider( |
|
label="Lora scale", |
|
show_label=True, |
|
minimum=0, |
|
maximum=1, |
|
step=0.1, |
|
value=0.8, |
|
) |
|
|
|
with gr.Accordion("Advanced Settings", open=True): |
|
|
|
|
|
seed_slicer_component = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=42, |
|
) |
|
|
|
randomize_seed_checkbox_component = gr.Checkbox( |
|
label="Randomize seed", value=True) |
|
|
|
with gr.Row(): |
|
strength_slider_component = gr.Slider( |
|
label="Strength", |
|
info="Indicates extent to transform the reference `image`. " |
|
"Must be between 0 and 1. `image` is used as a starting " |
|
"point and more noise is added the higher the `strength`.", |
|
minimum=0, |
|
maximum=1, |
|
step=0.01, |
|
value=0.85, |
|
) |
|
|
|
num_inference_steps_slider_component = gr.Slider( |
|
label="Number of inference steps", |
|
info="The number of denoising steps. More denoising steps " |
|
"usually lead to a higher quality image at the", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=20, |
|
) |
|
with gr.Column(): |
|
output_image_component = ImageSlider(label="Generate image", type="pil", slider_color="pink") |
|
|
|
with gr.Accordion("Debug", open=False): |
|
output_mask_component = gr.Image( |
|
type='pil', image_mode='RGB', label='Input mask', format="png") |
|
|
|
submit_button_component.click( |
|
fn=process, |
|
inputs=[ |
|
input_image_editor_component, |
|
lora_path, |
|
lora_weights, |
|
lora_scale, |
|
trigger_word, |
|
input_text_component, |
|
seed_slicer_component, |
|
randomize_seed_checkbox_component, |
|
strength_slider_component, |
|
num_inference_steps_slider_component |
|
], |
|
outputs=[ |
|
output_image_component, |
|
output_mask_component |
|
] |
|
) |
|
|
|
demo.launch(debug=False, show_error=True) |
|
|