from typing import Tuple import requests import random import numpy as np import gradio as gr import spaces import torch from PIL import Image from diffusers import FluxInpaintPipeline from huggingface_hub import login import os MARKDOWN = """ # FLUX.1 Inpainting 🔥 Shoutout to [Black Forest Labs](https://huggingface.co/black-forest-labs) team for creating this amazing model, and a big thanks to [Gothos](https://github.com/Gothos) for taking it to the next level by enabling inpainting with the FLUX. """ MAX_SEED = np.iinfo(np.int32).max IMAGE_SIZE = 1024 DEVICE = "cuda" if torch.cuda.is_available() else "cpu" def remove_background(image: Image.Image, threshold: int = 50) -> Image.Image: image = image.convert("RGBA") data = image.getdata() new_data = [] for item in data: avg = sum(item[:3]) / 3 if avg < threshold: new_data.append((0, 0, 0, 0)) else: new_data.append(item) image.putdata(new_data) return image EXAMPLES = [ [ { "background": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-image.png", stream=True).raw), "layers": [remove_background(Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-mask-2.png", stream=True).raw))], "composite": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-composite-2.png", stream=True).raw), }, "little lion", 42, False, 0.85, 30 ], [ { "background": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-image.png", stream=True).raw), "layers": [remove_background(Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-mask-3.png", stream=True).raw))], "composite": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-composite-3.png", stream=True).raw), }, "tribal tattoos", 42, False, 0.85, 30 ] ] pipe = FluxInpaintPipeline.from_pretrained( "black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE) def resize_image_dimensions( original_resolution_wh: Tuple[int, int], maximum_dimension: int = IMAGE_SIZE ) -> Tuple[int, int]: width, height = original_resolution_wh # if width <= maximum_dimension and height <= maximum_dimension: # width = width - (width % 32) # height = height - (height % 32) # return width, height if width > height: scaling_factor = maximum_dimension / width else: scaling_factor = maximum_dimension / height new_width = int(width * scaling_factor) new_height = int(height * scaling_factor) new_width = new_width - (new_width % 32) new_height = new_height - (new_height % 32) return new_width, new_height @spaces.GPU(duration=100) def process( input_image_editor: dict, input_text: str, seed_slicer: int, randomize_seed_checkbox: bool, strength_slider: float, num_inference_steps_slider: int, progress=gr.Progress(track_tqdm=True) ): if not input_text: gr.Info("Please enter a text prompt.") return None, None image = input_image_editor['background'] mask = input_image_editor['layers'][0] if not image: gr.Info("Please upload an image.") return None, None if not mask: gr.Info("Please draw a mask on the image.") return None, None width, height = resize_image_dimensions(original_resolution_wh=image.size) resized_image = image.resize((width, height), Image.LANCZOS) resized_mask = mask.resize((width, height), Image.LANCZOS) if randomize_seed_checkbox: seed_slicer = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed_slicer) result = pipe( prompt=input_text, image=resized_image, mask_image=resized_mask, width=width, height=height, strength=strength_slider, generator=generator, num_inference_steps=num_inference_steps_slider ).images[0] print('INFERENCE DONE') return result, resized_mask with gr.Blocks() as demo: gr.Markdown(MARKDOWN) with gr.Row(): with gr.Column(): input_image_editor_component = gr.ImageEditor( label='Image', type='pil', sources=["upload", "webcam"], image_mode='RGB', layers=False, brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed")) with gr.Row(): input_text_component = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) submit_button_component = gr.Button( value='Submit', variant='primary', scale=0) with gr.Accordion("Advanced Settings", open=True): seed_slicer_component = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, ) randomize_seed_checkbox_component = gr.Checkbox( label="Randomize seed", value=True) with gr.Row(): strength_slider_component = gr.Slider( label="Strength", info="Indicates extent to transform the reference `image`. " "Must be between 0 and 1. `image` is used as a starting " "point and more noise is added the higher the `strength`.", minimum=0, maximum=1, step=0.01, value=0.85, ) num_inference_steps_slider_component = gr.Slider( label="Number of inference steps", info="The number of denoising steps. More denoising steps " "usually lead to a higher quality image at the", minimum=1, maximum=50, step=1, value=20, ) with gr.Column(): output_image_component = gr.Image( type='pil', image_mode='RGB', label='Generated image', format="png") with gr.Accordion("Debug", open=False): output_mask_component = gr.Image( type='pil', image_mode='RGB', label='Input mask', format="png") with gr.Row(): gr.Examples( fn=process, examples=EXAMPLES, inputs=[ input_image_editor_component, input_text_component, seed_slicer_component, randomize_seed_checkbox_component, strength_slider_component, num_inference_steps_slider_component ], outputs=[ output_image_component, output_mask_component ], run_on_click=True, cache_examples=False ) submit_button_component.click( fn=process, inputs=[ input_image_editor_component, input_text_component, seed_slicer_component, randomize_seed_checkbox_component, strength_slider_component, num_inference_steps_slider_component ], outputs=[ output_image_component, output_mask_component ] ) demo.launch(debug=False, show_error=True)