Shankarm08 commited on
Commit
663e818
1 Parent(s): 9f4d885

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +110 -0
app.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import torch
4
+ import faiss
5
+ import numpy as np
6
+ from transformers import RagTokenizer, RagRetriever, RagTokenForGeneration
7
+ import pdfplumber
8
+ import pytesseract
9
+ from sklearn.metrics.pairwise import cosine_similarity
10
+
11
+ # Load the RAG tokenizer and model
12
+ tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
13
+ retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True)
14
+ model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq")
15
+
16
+ # Function to get embeddings for FAISS index
17
+ def get_faiss_index(data_chunks):
18
+ embeddings = [retriever.question_encoder_tokenizer(chunk, return_tensors="pt").input_ids for chunk in data_chunks]
19
+ embeddings = torch.cat(embeddings).detach().numpy()
20
+
21
+ # Build FAISS index
22
+ index = faiss.IndexFlatL2(embeddings.shape[1]) # L2 distance
23
+ index.add(embeddings)
24
+ return index, embeddings
25
+
26
+ # Extract text and tables from PDF (with OCR fallback)
27
+ def extract_text_from_pdf(pdf_file):
28
+ text = ""
29
+ with pdfplumber.open(pdf_file) as pdf:
30
+ for page_num, page in enumerate(pdf.pages, 1):
31
+ page_text = page.extract_text()
32
+ if page_text:
33
+ text += page_text + "\n"
34
+ else:
35
+ st.warning(f"No extractable text found on page {page_num}. Using OCR...")
36
+ page_image = page.to_image().original
37
+ ocr_text = pytesseract.image_to_string(page_image)
38
+ if ocr_text.strip():
39
+ text += ocr_text + "\n"
40
+ else:
41
+ st.error(f"Even OCR couldn't extract text from page {page_num}.")
42
+ return text
43
+
44
+ # Function to process input for RAG model
45
+ def generate_rag_response(user_input, data_chunks):
46
+ inputs = tokenizer([user_input], return_tensors="pt")
47
+ retrieved_docs = retriever(input_ids=inputs['input_ids'], n_docs=5)
48
+ outputs = model.generate(input_ids=inputs['input_ids'], context_input_ids=retrieved_docs['context_input_ids'])
49
+ return tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
50
+
51
+ # Streamlit app
52
+ st.title("CSV and PDF Chatbot with RAG")
53
+
54
+ # CSV file upload
55
+ csv_file = st.file_uploader("Upload a CSV file", type=["csv"])
56
+ csv_data = None
57
+
58
+ if csv_file:
59
+ csv_data = pd.read_csv(csv_file)
60
+ st.success("CSV loaded successfully!")
61
+ st.write("### CSV Data:")
62
+ st.write(csv_data)
63
+
64
+ # PDF file upload
65
+ pdf_file = st.file_uploader("Upload a PDF file", type=["pdf"])
66
+ pdf_text = ""
67
+ data_chunks = []
68
+
69
+ if pdf_file:
70
+ pdf_text = extract_text_from_pdf(pdf_file)
71
+
72
+ if not pdf_text.strip():
73
+ st.error("The extracted PDF text is empty. Please upload a PDF with extractable text.")
74
+ else:
75
+ st.success("PDF loaded successfully!")
76
+ st.write("### Extracted Text:")
77
+ st.write(pdf_text)
78
+
79
+ # Split the extracted text into chunks for FAISS
80
+ data_chunks = pdf_text.split('\n')
81
+ st.write("### Extracted Chunks:")
82
+ for chunk in data_chunks[:5]: # Display first 5 chunks
83
+ st.write(chunk)
84
+
85
+ # User input for chatbot
86
+ user_input = st.text_input("Ask a question about the CSV or PDF:")
87
+
88
+ if st.button("Get Response"):
89
+ if csv_data is None and not data_chunks:
90
+ st.warning("Please upload both a CSV and PDF file first.")
91
+ elif not user_input.strip():
92
+ st.warning("Please enter a question.")
93
+ else:
94
+ try:
95
+ if csv_data is not None:
96
+ # Check if the query is related to CSV content
97
+ csv_response = csv_data[csv_data.apply(lambda row: row.astype(str).str.contains(user_input, case=False).any(), axis=1)]
98
+ if not csv_response.empty:
99
+ st.write("### CSV Response:")
100
+ st.write(csv_response)
101
+ else:
102
+ st.write("No relevant data found in the CSV.")
103
+
104
+ if data_chunks:
105
+ # Generate response using RAG for PDF content
106
+ response = generate_rag_response(user_input, data_chunks)
107
+ st.write("### PDF Response:")
108
+ st.write(response)
109
+ except Exception as e:
110
+ st.error(f"Error while processing user input: {e}")