Spaces:
Sleeping
Sleeping
Shankarm08
commited on
Commit
•
a52a9bb
1
Parent(s):
7108a73
Update app.py
Browse files
app.py
CHANGED
@@ -1,110 +1,83 @@
|
|
1 |
import streamlit as st
|
2 |
-
import pandas as pd
|
3 |
import torch
|
4 |
-
import
|
5 |
-
|
6 |
-
|
7 |
import pdfplumber
|
8 |
-
import
|
9 |
from sklearn.metrics.pairwise import cosine_similarity
|
10 |
|
11 |
-
# Load
|
12 |
-
tokenizer = RagTokenizer.from_pretrained("facebook/rag-
|
13 |
-
retriever = RagRetriever.from_pretrained("facebook/rag-
|
14 |
-
model =
|
15 |
|
16 |
-
# Function to get embeddings
|
17 |
-
def
|
18 |
-
|
19 |
-
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
index = faiss.IndexFlatL2(embeddings.shape[1]) # L2 distance
|
23 |
-
index.add(embeddings)
|
24 |
-
return index, embeddings
|
25 |
-
|
26 |
-
# Extract text and tables from PDF (with OCR fallback)
|
27 |
def extract_text_from_pdf(pdf_file):
|
28 |
-
text = ""
|
29 |
with pdfplumber.open(pdf_file) as pdf:
|
30 |
-
|
|
|
31 |
page_text = page.extract_text()
|
32 |
-
if page_text:
|
33 |
text += page_text + "\n"
|
34 |
-
else:
|
35 |
-
st.warning(f"No extractable text found on page {page_num}. Using OCR...")
|
36 |
-
page_image = page.to_image().original
|
37 |
-
ocr_text = pytesseract.image_to_string(page_image)
|
38 |
-
if ocr_text.strip():
|
39 |
-
text += ocr_text + "\n"
|
40 |
-
else:
|
41 |
-
st.error(f"Even OCR couldn't extract text from page {page_num}.")
|
42 |
return text
|
43 |
|
44 |
-
#
|
45 |
-
def
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
50 |
|
51 |
-
# Streamlit app
|
52 |
-
st.title("
|
53 |
|
54 |
# CSV file upload
|
55 |
csv_file = st.file_uploader("Upload a CSV file", type=["csv"])
|
56 |
-
csv_data = None
|
57 |
-
|
58 |
if csv_file:
|
59 |
csv_data = pd.read_csv(csv_file)
|
60 |
-
st.
|
61 |
-
st.write("### CSV Data:")
|
62 |
st.write(csv_data)
|
63 |
|
64 |
# PDF file upload
|
65 |
pdf_file = st.file_uploader("Upload a PDF file", type=["pdf"])
|
66 |
-
pdf_text = ""
|
67 |
-
data_chunks = []
|
68 |
-
|
69 |
if pdf_file:
|
70 |
pdf_text = extract_text_from_pdf(pdf_file)
|
71 |
-
|
72 |
-
if not pdf_text.strip():
|
73 |
-
st.error("The extracted PDF text is empty. Please upload a PDF with extractable text.")
|
74 |
-
else:
|
75 |
st.success("PDF loaded successfully!")
|
76 |
-
st.
|
77 |
-
|
78 |
-
|
79 |
-
# Split the extracted text into chunks for FAISS
|
80 |
-
data_chunks = pdf_text.split('\n')
|
81 |
-
st.write("### Extracted Chunks:")
|
82 |
-
for chunk in data_chunks[:5]: # Display first 5 chunks
|
83 |
-
st.write(chunk)
|
84 |
|
85 |
# User input for chatbot
|
86 |
-
user_input = st.text_input("Ask a question
|
87 |
|
|
|
88 |
if st.button("Get Response"):
|
89 |
-
if csv_data is None
|
90 |
-
st.warning("Please upload
|
91 |
-
elif not user_input.strip():
|
92 |
-
st.warning("Please enter a question.")
|
93 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
try:
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
if not csv_response.empty:
|
99 |
-
st.write("### CSV Response:")
|
100 |
-
st.write(csv_response)
|
101 |
-
else:
|
102 |
-
st.write("No relevant data found in the CSV.")
|
103 |
-
|
104 |
-
if data_chunks:
|
105 |
-
# Generate response using RAG for PDF content
|
106 |
-
response = generate_rag_response(user_input, data_chunks)
|
107 |
-
st.write("### PDF Response:")
|
108 |
-
st.write(response)
|
109 |
except Exception as e:
|
110 |
-
st.error(f"Error while processing
|
|
|
|
1 |
import streamlit as st
|
|
|
2 |
import torch
|
3 |
+
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
|
4 |
+
from datasets import load_dataset
|
5 |
+
import pandas as pd
|
6 |
import pdfplumber
|
7 |
+
import numpy as np
|
8 |
from sklearn.metrics.pairwise import cosine_similarity
|
9 |
|
10 |
+
# Load RAG model, tokenizer, and retriever
|
11 |
+
tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
|
12 |
+
retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", use_dummy_dataset=True)
|
13 |
+
model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", retriever=retriever)
|
14 |
|
15 |
+
# Function to get RAG embeddings
|
16 |
+
def get_rag_embeddings(question, context):
|
17 |
+
inputs = tokenizer(question, context, return_tensors="pt", truncation=True)
|
18 |
+
with torch.no_grad():
|
19 |
+
output = model.generate(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask'])
|
20 |
+
return tokenizer.batch_decode(output, skip_special_tokens=True)[0]
|
21 |
|
22 |
+
# Extract text from PDF
|
|
|
|
|
|
|
|
|
|
|
23 |
def extract_text_from_pdf(pdf_file):
|
|
|
24 |
with pdfplumber.open(pdf_file) as pdf:
|
25 |
+
text = ""
|
26 |
+
for page in pdf.pages:
|
27 |
page_text = page.extract_text()
|
28 |
+
if page_text: # Check if the page has extractable text
|
29 |
text += page_text + "\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
return text
|
31 |
|
32 |
+
# Load dataset (wiki_dpr) and set trust_remote_code=True
|
33 |
+
def load_wiki_dpr():
|
34 |
+
return load_dataset('wiki_dpr', trust_remote_code=True)
|
35 |
+
|
36 |
+
# Store the PDF text and embeddings
|
37 |
+
pdf_text = ""
|
38 |
+
pdf_embeddings = None
|
39 |
+
csv_data = None
|
40 |
|
41 |
+
# Streamlit app UI
|
42 |
+
st.title("RAG-Powered PDF & CSV Chatbot")
|
43 |
|
44 |
# CSV file upload
|
45 |
csv_file = st.file_uploader("Upload a CSV file", type=["csv"])
|
|
|
|
|
46 |
if csv_file:
|
47 |
csv_data = pd.read_csv(csv_file)
|
48 |
+
st.write("CSV file loaded successfully!")
|
|
|
49 |
st.write(csv_data)
|
50 |
|
51 |
# PDF file upload
|
52 |
pdf_file = st.file_uploader("Upload a PDF file", type=["pdf"])
|
|
|
|
|
|
|
53 |
if pdf_file:
|
54 |
pdf_text = extract_text_from_pdf(pdf_file)
|
55 |
+
if pdf_text.strip():
|
|
|
|
|
|
|
56 |
st.success("PDF loaded successfully!")
|
57 |
+
st.text_area("Extracted Text from PDF", pdf_text, height=200)
|
58 |
+
else:
|
59 |
+
st.warning("No extractable text found in the PDF.")
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
# User input for chatbot
|
62 |
+
user_input = st.text_input("Ask a question related to the PDF or CSV:")
|
63 |
|
64 |
+
# Get response on button click
|
65 |
if st.button("Get Response"):
|
66 |
+
if not pdf_text and csv_data is None:
|
67 |
+
st.warning("Please upload a PDF or CSV file first.")
|
|
|
|
|
68 |
else:
|
69 |
+
# Combine PDF text and CSV content for context in RAG
|
70 |
+
combined_context = ""
|
71 |
+
if pdf_text:
|
72 |
+
combined_context += pdf_text
|
73 |
+
if csv_data is not None:
|
74 |
+
combined_context += "\n" + csv_data.to_string()
|
75 |
+
|
76 |
+
# Get RAG-generated response
|
77 |
try:
|
78 |
+
response = get_rag_embeddings(user_input, combined_context)
|
79 |
+
st.write("### Response:")
|
80 |
+
st.write(response)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
except Exception as e:
|
82 |
+
st.error(f"Error while processing the question: {e}")
|
83 |
+
|