File size: 5,820 Bytes
bc2c9f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import torch
import torch.nn as nn
import torch.distributions as D
from torch.nn import functional as F
import numpy as np
from torch.autograd import Variable

class BaseFlow(nn.Module):
    def __init__(self):
        super().__init__()

    def sample(self, n=1, context=None, **kwargs):
        dim = self.dim
        if isinstance(self.dim, int):
            dim = [dim, ]

        spl = Variable(torch.FloatTensor(n, *dim).normal_())
        lgd = Variable(torch.from_numpy(
            np.zeros(n).astype('float32')))
        if context is None:
            context = Variable(torch.from_numpy(
                np.ones((n, self.context_dim)).astype('float32')))

        if hasattr(self, 'gpu'):
            if self.gpu:
                spl = spl.cuda()
                lgd = lgd.cuda()
                context = context.gpu()

        return self.forward((spl, lgd, context))

    def cuda(self):
        self.gpu = True
        return super(BaseFlow, self).cuda()

def varify(x):
    return torch.autograd.Variable(torch.from_numpy(x))

def oper(array,oper,axis=-1,keepdims=False):
    a_oper = oper(array)
    if keepdims:
        shape = []
        for j,s in enumerate(array.size()):
            shape.append(s)
        shape[axis] = -1
        a_oper = a_oper.view(*shape)
    return a_oper

def log_sum_exp(A, axis=-1, sum_op=torch.sum):
    maximum = lambda x: x.max(axis)[0]
    A_max = oper(A,maximum,axis,True)
    summation = lambda x: sum_op(torch.exp(x-A_max), axis)
    B = torch.log(oper(A,summation,axis,True)) + A_max
    return B

delta = 1e-6
logsigmoid = lambda x: -F.softplus(-x)
log = lambda x: torch.log(x*1e2)-np.log(1e2)
softplus_ = nn.Softplus()
softplus = lambda x: softplus_(x) + delta
def softmax(x, dim=-1):
    e_x = torch.exp(x - x.max(dim=dim, keepdim=True)[0])
    out = e_x / e_x.sum(dim=dim, keepdim=True)
    return out

class DenseSigmoidFlow(nn.Module):
    def __init__(self, hidden_dim, in_dim=1, out_dim=1):
        super().__init__()
        self.in_dim = in_dim
        self.hidden_dim = hidden_dim
        self.out_dim = out_dim

        self.act_a = lambda x: F.softplus(x)
        self.act_b = lambda x: x
        self.act_w = lambda x: torch.softmax(x, dim=3)
        self.act_u = lambda x: torch.softmax(x, dim=3)

        self.u_ = torch.nn.Parameter(torch.Tensor(hidden_dim, in_dim))
        self.w_ = torch.nn.Parameter(torch.Tensor(out_dim, hidden_dim))
        self.num_params = 3* hidden_dim + in_dim
        self.reset_parameters()

    def reset_parameters(self):
        self.u_.data.uniform_(-0.001, 0.001)
        self.w_.data.uniform_(-0.001, 0.001)

    def forward(self, x, dsparams):
        delta = 1e-7
        inv = np.log(np.exp(1 - delta) - 1)
        ndim = self.hidden_dim
        pre_u = self.u_[None, None, :, :] + dsparams[:, :, -self.in_dim:][:, :, None, :]
        pre_w = self.w_[None, None, :, :] + dsparams[:, :, 2 * ndim:3 * ndim][:, :, None, :]
        a = self.act_a(dsparams[:, :, 0 * ndim:1 * ndim] + inv)
        b = self.act_b(dsparams[:, :, 1 * ndim:2 * ndim])
        w = self.act_w(pre_w)
        u = self.act_u(pre_u)

        pre_sigm = torch.sum(u * a[:, :, :, None] * x[:, :, None, :], 3) + b
        sigm = torch.selu(pre_sigm)
        x_pre = torch.sum(w * sigm[:, :, None, :], dim=3)
        #x_ = torch.special.logit(x_pre, eps=1e-5)
        #xnew = x_
        xnew = x_pre
        return xnew


class DDSF(nn.Module):
    def __init__(self, n_blocks=1, hidden_dim=16):
        super().__init__()
        self.num_params = 0
        if n_blocks == 1:
            model = [DenseSigmoidFlow(hidden_dim, in_dim=1, out_dim=1)]
        else:
            model = [DenseSigmoidFlow(hidden_dim=hidden_dim, in_dim=1, out_dim=hidden_dim)]
            for _ in range(n_blocks-2):
                model += [DenseSigmoidFlow(hidden_dim=hidden_dim, in_dim=hidden_dim, out_dim=hidden_dim)]
            model += [DenseSigmoidFlow(hidden_dim=hidden_dim, in_dim=hidden_dim, out_dim=1)]
        self.model = nn.Sequential(*model)
        for block in self.model:
            self.num_params += block.num_params

    def forward(self, x, dsparams):
        x = x.unsqueeze(2)
        start = 0
        for block in self.model:
            block_dsparams = dsparams[:,:,start:start+block.num_params]
            x = block(x, block_dsparams)
            start += block.num_params
        return x.squeeze(2)

def compute_jacobian(inputs, outputs):
    batch_size = outputs.size(0)
    outVector = torch.sum(outputs,0).view(-1)
    outdim = outVector.size()[0]
    jac = torch.stack([torch.autograd.grad(outVector[i], inputs,
                                     retain_graph=True, create_graph=True)[0].view(batch_size, outdim) for i in range(outdim)], dim=1)
    jacs = [jac[i,:,:] for i in range(batch_size)]
    print(jacs[1])

if __name__ == '__main__':

    flow = DDSF(n_blocks=10, hidden_dim=50)
    x = torch.arange(20).view(10, 2)/10.-1.
    x = Variable(x, requires_grad=True)

    dsparams = torch.randn(1, 2, 2*flow.num_params).repeat(10,1,1)
    y = flow(x, dsparams)
    print(x, y)
    compute_jacobian(x, y)

    """

    flow = ConvDenseSigmoidFlow(1,256,1)

    dsparams = torch.randn(1, 2, 1000).repeat(10,1,1)

    x = torch.arange(20).view(10,2,1).repeat(1,1,4).view(10,2,2,2)/10.

    print(x.size(), dsparams.size())

    out = flow(x, dsparams)

    print(x, out.flatten(2), out.size())

    flow = ConvDDSF(n_blocks=3)

    dsparams = torch.randn(1, 2, flow.num_params).repeat(10,1,1)

    x = torch.arange(80).view(10,2,4).view(10,2,2,2)/10

    print(x.size(), dsparams.size())

    out = flow(x, dsparams)

    print(x, out.flatten(2), out.size())

    """