ConceptGAN / app.py
shaoan xie
requirements2
048f364
import gradio as gr
import torch
import pickle
from torchvision.utils import save_image
import numpy as np
from diffusers import StableDiffusionUpscalePipeline
from huggingface_hub import hf_hub_download
model_path = hf_hub_download(repo_id="Shaoan/ConceptGAN", filename="augceleba_8064.pkl")
with open(model_path, 'rb') as f:
G = pickle.load(f)['G_ema'].cpu().float() # torch.nn.Module
cchoices = ['Bald',
'Black Hair',
'Blond Hair',
'Smiling',
'NoSmile',
'Male',
'Female'
]
model_choices = [
'Change Dim = 8',
'Change Dim = 15',
'Change Dim = 30',
'Change Dim = 60'
]
cchoices = [
'Big Nose',
'Black Hair',
'Blond Hair',
'Chubby',
'Eyeglasses',
'Male',
'Pale Skin',
'Smiling',
'Straight Hair',
'Wavy Hair',
'Wearing Hat',
'Young'
]
import requests
from PIL import Image
from io import BytesIO
from diffusers import LDMSuperResolutionPipeline
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
model_id = "CompVis/ldm-super-resolution-4x-openimages"
# load model and scheduler
pipeline = LDMSuperResolutionPipeline.from_pretrained(model_id)
pipeline = pipeline.to(device)
model_id = "stabilityai/stable-diffusion-x4-upscaler"
text_pipeline = StableDiffusionUpscalePipeline.from_pretrained(
model_id, variant="fp32", torch_dtype=torch.float32
)
# let's download an image
def super_res(low_res_img, num_steps):
# run pipeline in inference (sample random noise and denoise)
upscaled_image = pipeline(low_res_img, num_inference_steps=num_steps, eta=1).images[0]
#upscaled_image = text_pipeline(prompt="a sharp image of human face", image=low_res_img, num_inference_steps=75).images[0]
return upscaled_image
@torch.no_grad()
def generate(seed, upscale, upscale_steps,*checkboxes):
z = torch.randn([1, G.z_dim], generator=torch.Generator().manual_seed(seed))
#m = torch.tensor([[1, 0, 0, 0, 1, 1, 0.]]).repeat(1, 1)
checkboxes_vector = torch.zeros([20])
for i in range(len(checkboxes)):
if i == 1:
checkboxes_vector[cchoices.index('Black Hair')] = checkboxes[i]
elif i == 2:
checkboxes_vector[cchoices.index('Blond Hair')] = checkboxes[i]
elif i == 3:
checkboxes_vector[cchoices.index('Straight Hair')] = checkboxes[i]
elif i == 4:
checkboxes_vector[cchoices.index('Wavy Hair')] = checkboxes[i]
elif i == 5:
checkboxes_vector[cchoices.index('Young')] = checkboxes[i] * 2
elif i == 6:
checkboxes_vector[cchoices.index('Male')] = checkboxes[i]
elif i == 9:
checkboxes_vector[cchoices.index('Big Nose')] = checkboxes[i]
elif i == 10:
checkboxes_vector[cchoices.index('Chubby')] = checkboxes[i]
elif i == 11:
checkboxes_vector[cchoices.index('Eyeglasses')] = checkboxes[i] * 2
elif i == 12:
checkboxes_vector[cchoices.index('Pale Skin')] = checkboxes[i]
elif i == 13:
checkboxes_vector[cchoices.index('Smiling')] = checkboxes[i]
elif i == 14:
checkboxes_vector[cchoices.index('Wearing Hat')] = checkboxes[i] * 2
is_young = checkboxes[5]
is_male = checkboxes[6]
is_bald = checkboxes[0]
is_goatee = checkboxes[7]
is_mustache = checkboxes[8]
checkboxes_vector[12] = is_mustache * 2
checkboxes_vector[13] = is_mustache * 2
checkboxes_vector[14] = is_goatee *2
checkboxes_vector[15] = is_goatee*2
checkboxes_vector[16] = is_bald
checkboxes_vector[17] = is_bald
checkboxes_vector[18] = is_bald
checkboxes_vector[19] = is_bald
print(checkboxes_vector)
m = checkboxes_vector.view(1, 20)
ws = G.mapping(z, m, truncation_psi=0.5)
img = (G.synthesis(ws, force_fp32=True).clip(-1,1)+1)/2
if upscale:
up_img = np.array(super_res(img*2-1, upscale_steps))
return up_img
else:
return img[0].permute(1, 2, 0).numpy()
# Create the interface using gr.Blocks
with gr.Blocks() as demo:
with gr.Row():
slider1 = gr.Slider(label='Not Bald <--------------> Bald', minimum=0, maximum=1, step=0.01)
slider2 = gr.Slider(label='No Black Hair <--------> Black Hair', minimum=0, maximum=1, step=0.01)
slider3 = gr.Slider(label='No Blond Hair <--------> Blond Hair', minimum=0, maximum=1, step=0.01)
slider4 = gr.Slider(label='No Straight Hair <-----> Straight Hair', minimum=0, maximum=1, step=0.01)
slider5 = gr.Slider(label='No Wavy Hair <-------> Wavy Hair', minimum=0, maximum=1, step=0.01)
sliders = [ slider1, slider2, slider3, slider4, slider5]
with gr.Row():
sliders += [gr.Slider(label='Old <--------------> Young', minimum=0, maximum=1, step=0.01)]
sliders += [gr.Slider(label='Female <--------------> Male', minimum=0, maximum=1, step=0.01)]
with gr.Row():
sliders += [gr.Slider(label='No Goatee <--------------> Goatee', minimum=0, maximum=1, step=0.01)]
sliders += [gr.Slider(label='No Mustache <--------------> Mustache', minimum=0, maximum=1, step=0.01)]
with gr.Row():
sliders += [
gr.Slider(label='Small Nose <-------> Big Nose', minimum=0, maximum=1, step=0.01),
gr.Slider(label='Slim <--------> Chubby', minimum=0, maximum=1, step=0.01),
gr.Slider(label='No Eyeglasses <--------> Eyeglasses', minimum=0, maximum=1, step=0.01),
gr.Slider(label='Tan Skin <-------> Pale Skin', minimum=0, maximum=1, step=0.01),
gr.Slider(label='Not Smiling <---------> Smiling', minimum=0, maximum=1, step=0.01),
gr.Slider(label='No Hat <---------> Wearing Hat', minimum=0, maximum=1, step=0.01),
]
seed_input = gr.Number(label="Seed", value=6)
upscale_funcs = []
with gr.Row():
upscale_funcs = [gr.Checkbox(label="Upscale 4x")]
upscale_funcs += [gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=10)]
generate_button = gr.Button("Generate")
output_image = gr.Image(label="Generated Image")
for slider in sliders:
slider.change(fn=generate, inputs=[seed_input] + upscale_funcs + sliders, outputs=output_image)
# Set the action for the button
generate_button.click(fn=generate, inputs=[seed_input] + upscale_funcs +sliders, outputs=output_image)
# Launch the demo
demo.launch()