File size: 2,997 Bytes
d75759d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import os
import streamlit as st
from langchain.llms import HuggingFaceHub
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate

from models import llms

class UserInterface():

    def __init__(self, ):
        st.warning("Warning: Some models may not work and some models may require GPU to run")
        st.text("An Open Source Chat Application")
        st.header("Open LLMs")

        self.API_KEY = st.sidebar.text_input(
            'API Key',
            type='password',
            help="Type in your HuggingFace API key to use this app"
        )

        models_name = (
            "HuggingFaceH4/zephyr-7b-beta",
            "Open-Orca/Mistral-7B-OpenOrca",
        )
        self.models = st.sidebar.selectbox(
            label="Choose your models",
            options=models_name,
            help="Choose your model",
        )

        self.temperature = st.sidebar.slider(
            label='Temperature',
            min_value=0.1,
            max_value=1.0,
            step=0.1,
            value=0.5,
            help="Set the temperature to get accurate or random result"
        )

        self.max_token_length = st.sidebar.slider(
            label="Token Length",
            min_value=32,
            max_value=2048,
            step=16,
            value=64,
            help="Set max tokens to generate maximum amount of text output"
        )


        self.model_kwargs = {
            "temperature": self.temperature,
            "max_length": self.max_token_length
        }

        os.environ['HUGGINGFACEHUB_API_TOKEN'] = self.API_KEY

    
    def form_data(self):

        try:
            if not self.API_KEY.startswith('hf_'):
                st.warning('Please enter your API key!', icon='⚠')
                text_input_visibility = True
            
            
            st.subheader("Context")
            context = st.chat_input(disabled=text_input_visibility)
            st.subheader("Question")
            question = st.chat_input(disabled=text_input_visibility)


            template = """
            Answer the question based on the context, if you don't know then output "Out of Context"
            Context: {context}
            Question: {question}

            Answer: 
            """
            prompt = PromptTemplate(
                template=template,
                input_variables=[
                    'question',
                    'context'
                ]
            )
            llm = HuggingFaceHub(
                repo_id = self.model_name,
                model_kwargs = self.model_kwargs
            )

            llm_chain = LLMChain(
                prompt=prompt,
                llm=llm,
            )

            result = llm_chain.run({
                "question": question,
                "context": context
            })

            st.markdown(result)
        except Exception as e:
            st.error(e, icon="🚨")

model = UserInterface()
model.form_data()