File size: 1,748 Bytes
d9b6201
 
 
 
 
 
a03b234
d9b6201
 
 
 
 
 
 
48d5590
d9b6201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import gradio as gr
from huggingface_hub import InferenceClient

client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")

def format_prompt(message, history):
    system_prompt = ("os.getenv("system_prompt")")
    prompt = f"<s>{system_prompt}"
    for user_prompt, bot_response in history:
        prompt += f"[USER] {user_prompt} [/USER]"
        prompt += f"{bot_response}</s> "
    prompt += f"[USER] {message} [/USER]</s>"
    return prompt
    
def generate(prompt, history, temperature=0.6, max_new_tokens=2048, top_p=0.95, repetition_penalty=1.2):
    temperature = float(temperature)
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )

    formatted_prompt = format_prompt(prompt, history)
    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""
    for response in stream:
        output += response.token.text
        yield output
    return output


examples = [
    ["What is ChatSherman, and how does it work?", []],
    ["Is my personal information and data safe when I use the ChatSherman chatbot?", []],
    ["What are some common applications of deep learning in engineering?", []]
]

gr.ChatInterface(
    fn=generate,
    chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
    title="ChatSherman",
    description = "This is an AI chatbot powered by ShermanAI. Enter your question below to get started. ",
    examples=examples,
    concurrency_limit=20,
).launch(show_api=False)