File size: 4,837 Bytes
f0e9666
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# Copyright (c) Alibaba, Inc. and its affiliates.

import logging
import os
import os.path as osp
from datetime import datetime

import torch
from easydict import EasyDict

cfg = EasyDict(__name__='Config: VideoLDM Decoder')

# ---------------------------work dir--------------------------
cfg.work_dir = 'workspace/'

# ---------------------------Global Variable-----------------------------------
cfg.resolution = [448, 256]
cfg.max_frames = 32
# -----------------------------------------------------------------------------

# ---------------------------Dataset Parameter---------------------------------
cfg.mean = [0.5, 0.5, 0.5]
cfg.std = [0.5, 0.5, 0.5]
cfg.max_words = 1000

# PlaceHolder
cfg.vit_out_dim = 1024
cfg.vit_resolution = [224, 224]
cfg.depth_clamp = 10.0
cfg.misc_size = 384
cfg.depth_std = 20.0

cfg.frame_lens = 32
cfg.sample_fps = 8

cfg.batch_sizes = 1
# -----------------------------------------------------------------------------

# ---------------------------Mode Parameters-----------------------------------
# Diffusion
cfg.schedule = 'cosine'
cfg.num_timesteps = 1000
cfg.mean_type = 'v'
cfg.var_type = 'fixed_small'
cfg.loss_type = 'mse'
cfg.ddim_timesteps = 50
cfg.ddim_eta = 0.0
cfg.clamp = 1.0
cfg.share_noise = False
cfg.use_div_loss = False
cfg.noise_strength = 0.1

# classifier-free guidance
cfg.p_zero = 0.1
cfg.guide_scale = 3.0

# clip vision encoder
cfg.vit_mean = [0.48145466, 0.4578275, 0.40821073]
cfg.vit_std = [0.26862954, 0.26130258, 0.27577711]

# Model
cfg.scale_factor = 0.18215
cfg.use_fp16 = True
cfg.temporal_attention = True
cfg.decoder_bs = 8

cfg.UNet = {
    'type': 'Vid2VidSDUNet',
    'in_dim': 4,
    'dim': 320,
    'y_dim': cfg.vit_out_dim,
    'context_dim': 1024,
    'out_dim': 8 if cfg.var_type.startswith('learned') else 4,
    'dim_mult': [1, 2, 4, 4],
    'num_heads': 8,
    'head_dim': 64,
    'num_res_blocks': 2,
    'attn_scales': [1 / 1, 1 / 2, 1 / 4],
    'dropout': 0.1,
    'temporal_attention': cfg.temporal_attention,
    'temporal_attn_times': 1,
    'use_checkpoint': False,
    'use_fps_condition': False,
    'use_sim_mask': False,
    'num_tokens': 4,
    'default_fps': 8,
    'input_dim': 1024
}

cfg.guidances = []

# auotoencoder from stabel diffusion
cfg.auto_encoder = {
    'type': 'AutoencoderKL',
    'ddconfig': {
        'double_z': True,
        'z_channels': 4,
        'resolution': 256,
        'in_channels': 3,
        'out_ch': 3,
        'ch': 128,
        'ch_mult': [1, 2, 4, 4],
        'num_res_blocks': 2,
        'attn_resolutions': [],
        'dropout': 0.0
    },
    'embed_dim': 4,
    'pretrained': 'models/v2-1_512-ema-pruned.ckpt'
}
# clip embedder
cfg.embedder = {
    'type': 'FrozenOpenCLIPEmbedder',
    'layer': 'penultimate',
    'vit_resolution': [224, 224],
    'pretrained': 'open_clip_pytorch_model.bin'
}
# -----------------------------------------------------------------------------

# ---------------------------Training Settings---------------------------------
# training and optimizer
cfg.ema_decay = 0.9999
cfg.num_steps = 600000
cfg.lr = 5e-5
cfg.weight_decay = 0.0
cfg.betas = (0.9, 0.999)
cfg.eps = 1.0e-8
cfg.chunk_size = 16
cfg.alpha = 0.7
cfg.save_ckp_interval = 1000
# -----------------------------------------------------------------------------

# ----------------------------Pretrain Settings---------------------------------
# Default: load 2d pretrain
cfg.fix_weight = False
cfg.load_match = False
cfg.pretrained_checkpoint = 'v2-1_512-ema-pruned.ckpt'
cfg.pretrained_image_keys = 'stable_diffusion_image_key_temporal_attention_x1.json'
cfg.resume_checkpoint = 'img2video_ldm_0779000.pth'
# -----------------------------------------------------------------------------

# -----------------------------Visual-------------------------------------------
# Visual videos
cfg.viz_interval = 1000
cfg.visual_train = {
    'type': 'VisualVideoTextDuringTrain',
}
cfg.visual_inference = {
    'type': 'VisualGeneratedVideos',
}
cfg.inference_list_path = ''

# logging
cfg.log_interval = 100

# Default log_dir
cfg.log_dir = 'workspace/output_data'
# -----------------------------------------------------------------------------

# ---------------------------Others--------------------------------------------
# seed
cfg.seed = 8888

cfg.negative_prompt = 'painting, oil painting, illustration, drawing, art, sketch, oil painting, cartoon, \
CG Style, 3D render, unreal engine, blurring, dirty, messy, worst quality, low quality, frames, watermark, \
signature, jpeg artifacts, deformed, lowres, over-smooth'

cfg.positive_prompt = 'Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera,   \
hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing,  \
skin pore detailing, hyper sharpness, perfect without deformations.'