Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,943 Bytes
f0e9666 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
# Copyright (c) Alibaba, Inc. and its affiliates.
import torch
import torchsde
from tqdm.auto import trange
from video_to_video.utils.logger import get_logger
logger = get_logger()
def get_ancestral_step(sigma_from, sigma_to, eta=1.):
"""
Calculates the noise level (sigma_down) to step down to and the amount
of noise to add (sigma_up) when doing an ancestral sampling step.
"""
if not eta:
return sigma_to, 0.
sigma_up = min(
sigma_to,
eta * (
sigma_to**2 * # noqa
(sigma_from**2 - sigma_to**2) / sigma_from**2)**0.5)
sigma_down = (sigma_to**2 - sigma_up**2)**0.5
return sigma_down, sigma_up
def get_scalings(sigma):
c_out = -sigma
c_in = 1 / (sigma**2 + 1.**2)**0.5
return c_out, c_in
@torch.no_grad()
def sample_heun(noise,
model,
sigmas,
s_churn=0.,
s_tmin=0.,
s_tmax=float('inf'),
s_noise=1.,
show_progress=True):
"""
Implements Algorithm 2 (Heun steps) from Karras et al. (2022).
"""
x = noise * sigmas[0]
for i in trange(len(sigmas) - 1, disable=not show_progress):
gamma = 0.
if s_tmin <= sigmas[i] <= s_tmax and sigmas[i] < float('inf'):
gamma = min(s_churn / (len(sigmas) - 1), 2**0.5 - 1)
eps = torch.randn_like(x) * s_noise
sigma_hat = sigmas[i] * (gamma + 1)
if gamma > 0:
x = x + eps * (sigma_hat**2 - sigmas[i]**2)**0.5
if sigmas[i] == float('inf'):
# Euler method
denoised = model(noise, sigma_hat)
x = denoised + sigmas[i + 1] * (gamma + 1) * noise
else:
_, c_in = get_scalings(sigma_hat)
denoised = model(x * c_in, sigma_hat)
d = (x - denoised) / sigma_hat
dt = sigmas[i + 1] - sigma_hat
if sigmas[i + 1] == 0:
# Euler method
x = x + d * dt
else:
# Heun's method
x_2 = x + d * dt
_, c_in = get_scalings(sigmas[i + 1])
denoised_2 = model(x_2 * c_in, sigmas[i + 1])
d_2 = (x_2 - denoised_2) / sigmas[i + 1]
d_prime = (d + d_2) / 2
x = x + d_prime * dt
return x
class BatchedBrownianTree:
"""
A wrapper around torchsde.BrownianTree that enables batches of entropy.
"""
def __init__(self, x, t0, t1, seed=None, **kwargs):
t0, t1, self.sign = self.sort(t0, t1)
w0 = kwargs.get('w0', torch.zeros_like(x))
if seed is None:
seed = torch.randint(0, 2**63 - 1, []).item()
self.batched = True
try:
assert len(seed) == x.shape[0]
w0 = w0[0]
except TypeError:
seed = [seed]
self.batched = False
self.trees = [
torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs)
for s in seed
]
@staticmethod
def sort(a, b):
return (a, b, 1) if a < b else (b, a, -1)
def __call__(self, t0, t1):
t0, t1, sign = self.sort(t0, t1)
w = torch.stack([tree(t0, t1) for tree in self.trees]) * (
self.sign * sign)
return w if self.batched else w[0]
class BrownianTreeNoiseSampler:
"""
A noise sampler backed by a torchsde.BrownianTree.
Args:
x (Tensor): The tensor whose shape, device and dtype to use to generate
random samples.
sigma_min (float): The low end of the valid interval.
sigma_max (float): The high end of the valid interval.
seed (int or List[int]): The random seed. If a list of seeds is
supplied instead of a single integer, then the noise sampler will
use one BrownianTree per batch item, each with its own seed.
transform (callable): A function that maps sigma to the sampler's
internal timestep.
"""
def __init__(self,
x,
sigma_min,
sigma_max,
seed=None,
transform=lambda x: x):
self.transform = transform
t0 = self.transform(torch.as_tensor(sigma_min))
t1 = self.transform(torch.as_tensor(sigma_max))
self.tree = BatchedBrownianTree(x, t0, t1, seed)
def __call__(self, sigma, sigma_next):
t0 = self.transform(torch.as_tensor(sigma))
t1 = self.transform(torch.as_tensor(sigma_next))
return self.tree(t0, t1) / (t1 - t0).abs().sqrt()
@torch.no_grad()
def sample_dpmpp_2m_sde(noise,
model,
sigmas,
eta=1.,
s_noise=1.,
solver_type='midpoint',
show_progress=True,
variant_info=None):
"""
DPM-Solver++ (2M) SDE.
"""
assert solver_type in {'heun', 'midpoint'}
x = noise * sigmas[0]
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas[
sigmas < float('inf')].max()
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max)
old_denoised = None
h_last = None
for i in trange(len(sigmas) - 1, disable=not show_progress):
logger.info(f'step: {i}')
if sigmas[i] == float('inf'):
# Euler method
denoised = model(noise, sigmas[i], variant_info=variant_info)
x = denoised + sigmas[i + 1] * noise
else:
_, c_in = get_scalings(sigmas[i])
denoised = model(x * c_in, sigmas[i], variant_info=variant_info)
if sigmas[i + 1] == 0:
# Denoising step
x = denoised
else:
# DPM-Solver++(2M) SDE
t, s = -sigmas[i].log(), -sigmas[i + 1].log()
h = s - t
eta_h = eta * h
x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + \
(-h - eta_h).expm1().neg() * denoised
if old_denoised is not None:
r = h_last / h
if solver_type == 'heun':
x = x + ((-h - eta_h).expm1().neg() / (-h - eta_h) + 1) * \
(1 / r) * (denoised - old_denoised)
elif solver_type == 'midpoint':
x = x + 0.5 * (-h - eta_h).expm1().neg() * \
(1 / r) * (denoised - old_denoised)
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[
i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise
old_denoised = denoised
h_last = h
if variant_info is not None and variant_info.get('type') == 'variant1':
x_long, x_short = x.chunk(2, dim=0)
x = x_long * (1-variant_info['alpha']) + x_short * variant_info['alpha']
return x |