Spaces:
Runtime error
Runtime error
File size: 18,177 Bytes
f0e9666 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
import random
import torch
from .schedules_sdedit import karras_schedule
from .solvers_sdedit import sample_dpmpp_2m_sde, sample_heun
from video_to_video.utils.logger import get_logger
logger = get_logger()
__all__ = ['GaussianDiffusion']
def _i(tensor, t, x):
shape = (x.size(0), ) + (1, ) * (x.ndim - 1)
return tensor[t.to(tensor.device)].view(shape).to(x.device)
class GaussianDiffusion(object):
def __init__(self, sigmas):
self.sigmas = sigmas
self.alphas = torch.sqrt(1 - sigmas**2)
self.num_timesteps = len(sigmas)
def diffuse(self, x0, t, noise=None):
noise = torch.randn_like(x0) if noise is None else noise
xt = _i(self.alphas, t, x0) * x0 + _i(self.sigmas, t, x0) * noise
return xt
def get_velocity(self, x0, xt, t):
sigmas = _i(self.sigmas, t, xt)
alphas = _i(self.alphas, t, xt)
velocity = (alphas * xt - x0) / sigmas
return velocity
def get_x0(self, v, xt, t):
sigmas = _i(self.sigmas, t, xt)
alphas = _i(self.alphas, t, xt)
x0 = alphas * xt - sigmas * v
return x0
def denoise(self,
xt,
t,
s,
model,
model_kwargs={},
guide_scale=None,
guide_rescale=None,
clamp=None,
percentile=None,
variant_info=None,):
s = t - 1 if s is None else s
# hyperparams
sigmas = _i(self.sigmas, t, xt)
alphas = _i(self.alphas, t, xt)
alphas_s = _i(self.alphas, s.clamp(0), xt)
alphas_s[s < 0] = 1.
sigmas_s = torch.sqrt(1 - alphas_s**2)
# precompute variables
betas = 1 - (alphas / alphas_s)**2
coef1 = betas * alphas_s / sigmas**2
coef2 = (alphas * sigmas_s**2) / (alphas_s * sigmas**2)
var = betas * (sigmas_s / sigmas)**2
log_var = torch.log(var).clamp_(-20, 20)
# prediction
if guide_scale is None:
assert isinstance(model_kwargs, dict)
out = model(xt, t=t, **model_kwargs)
else:
# classifier-free guidance
assert isinstance(model_kwargs, list)
if len(model_kwargs) > 3:
y_out = model(xt, t=t, **model_kwargs[0], **model_kwargs[2], **model_kwargs[3], **model_kwargs[4], **model_kwargs[5])
else:
y_out = model(xt, t=t, **model_kwargs[0], **model_kwargs[2], variant_info=variant_info)
if guide_scale == 1.:
out = y_out
else:
if len(model_kwargs) > 3:
u_out = model(xt, t=t, **model_kwargs[1], **model_kwargs[2], **model_kwargs[3], **model_kwargs[4], **model_kwargs[5])
else:
u_out = model(xt, t=t, **model_kwargs[1], **model_kwargs[2], variant_info=variant_info)
out = u_out + guide_scale * (y_out - u_out)
if guide_rescale is not None:
assert guide_rescale >= 0 and guide_rescale <= 1
ratio = (
y_out.flatten(1).std(dim=1) / # noqa
(out.flatten(1).std(dim=1) + 1e-12)
).view((-1, ) + (1, ) * (y_out.ndim - 1))
out *= guide_rescale * ratio + (1 - guide_rescale) * 1.0
x0 = alphas * xt - sigmas * out
# restrict the range of x0
if percentile is not None:
assert percentile > 0 and percentile <= 1
s = torch.quantile(x0.flatten(1).abs(), percentile, dim=1)
s = s.clamp_(1.0).view((-1, ) + (1, ) * (xt.ndim - 1))
x0 = torch.min(s, torch.max(-s, x0)) / s
elif clamp is not None:
x0 = x0.clamp(-clamp, clamp)
# recompute eps using the restricted x0
eps = (xt - alphas * x0) / sigmas
# compute mu (mean of posterior distribution) using the restricted x0
mu = coef1 * x0 + coef2 * xt
return mu, var, log_var, x0, eps
@torch.no_grad()
def sample(self,
noise,
model,
model_kwargs={},
condition_fn=None,
guide_scale=None,
guide_rescale=None,
clamp=None,
percentile=None,
solver='euler_a',
solver_mode='fast',
steps=20,
t_max=None,
t_min=None,
discretization=None,
discard_penultimate_step=None,
return_intermediate=None,
show_progress=False,
seed=-1,
chunk_inds=None,
**kwargs):
# sanity check
assert isinstance(steps, (int, torch.LongTensor))
assert t_max is None or (t_max > 0 and t_max <= self.num_timesteps - 1)
assert t_min is None or (t_min >= 0 and t_min < self.num_timesteps - 1)
assert discretization in (None, 'leading', 'linspace', 'trailing')
assert discard_penultimate_step in (None, True, False)
assert return_intermediate in (None, 'x0', 'xt')
# function of diffusion solver
solver_fn = {
'heun': sample_heun,
'dpmpp_2m_sde': sample_dpmpp_2m_sde
}[solver]
# options
schedule = 'karras' if 'karras' in solver else None
discretization = discretization or 'linspace'
seed = seed if seed >= 0 else random.randint(0, 2**31)
if isinstance(steps, torch.LongTensor):
discard_penultimate_step = False
if discard_penultimate_step is None:
discard_penultimate_step = True if solver in (
'dpm2', 'dpm2_ancestral', 'dpmpp_2m_sde', 'dpm2_karras',
'dpm2_ancestral_karras', 'dpmpp_2m_sde_karras') else False
# function for denoising xt to get x0
intermediates = []
def model_fn(xt, sigma):
# denoising
t = self._sigma_to_t(sigma).repeat(len(xt)).round().long()
x0 = self.denoise(xt, t, None, model, model_kwargs, guide_scale,
guide_rescale, clamp, percentile)[-2]
# collect intermediate outputs
if return_intermediate == 'xt':
intermediates.append(xt)
elif return_intermediate == 'x0':
intermediates.append(x0)
return x0
mask_cond = model_kwargs[3]['mask_cond']
def model_chunk_fn(xt, sigma):
# denoising
t = self._sigma_to_t(sigma).repeat(len(xt)).round().long()
O_LEN = chunk_inds[0][-1]-chunk_inds[1][0]
cut_f_ind = O_LEN//2
results_list = []
for i in range(len(chunk_inds)):
ind_start, ind_end = chunk_inds[i]
xt_chunk = xt[:,:,ind_start:ind_end].clone()
cur_f = xt_chunk.size(2)
model_kwargs[3]['mask_cond'] = mask_cond[:,ind_start:ind_end].clone()
x0_chunk = self.denoise(xt_chunk, t, None, model, model_kwargs, guide_scale,
guide_rescale, clamp, percentile)[-2]
if i == 0:
results_list.append(x0_chunk[:,:,:cur_f+cut_f_ind-O_LEN])
elif i == len(chunk_inds)-1:
results_list.append(x0_chunk[:,:,cut_f_ind:])
else:
results_list.append(x0_chunk[:,:,cut_f_ind:cur_f+cut_f_ind-O_LEN])
x0 = torch.concat(results_list, dim=2)
torch.cuda.empty_cache()
return x0
# get timesteps
if isinstance(steps, int):
steps += 1 if discard_penultimate_step else 0
t_max = self.num_timesteps - 1 if t_max is None else t_max
t_min = 0 if t_min is None else t_min
# discretize timesteps
if discretization == 'leading':
steps = torch.arange(t_min, t_max + 1,
(t_max - t_min + 1) / steps).flip(0)
elif discretization == 'linspace':
steps = torch.linspace(t_max, t_min, steps)
elif discretization == 'trailing':
steps = torch.arange(t_max, t_min - 1,
-((t_max - t_min + 1) / steps))
if solver_mode == 'fast':
t_mid = 500
steps1 = torch.arange(t_max, t_mid - 1,
-((t_max - t_mid + 1) / 4))
steps2 = torch.arange(t_mid, t_min - 1,
-((t_mid - t_min + 1) / 11))
steps = torch.concat([steps1, steps2])
else:
raise NotImplementedError(
f'{discretization} discretization not implemented')
steps = steps.clamp_(t_min, t_max)
steps = torch.as_tensor(
steps, dtype=torch.float32, device=noise.device)
# get sigmas
sigmas = self._t_to_sigma(steps)
sigmas = torch.cat([sigmas, sigmas.new_zeros([1])])
if schedule == 'karras':
if sigmas[0] == float('inf'):
sigmas = karras_schedule(
n=len(steps) - 1,
sigma_min=sigmas[sigmas > 0].min().item(),
sigma_max=sigmas[sigmas < float('inf')].max().item(),
rho=7.).to(sigmas)
sigmas = torch.cat([
sigmas.new_tensor([float('inf')]), sigmas,
sigmas.new_zeros([1])
])
else:
sigmas = karras_schedule(
n=len(steps),
sigma_min=sigmas[sigmas > 0].min().item(),
sigma_max=sigmas.max().item(),
rho=7.).to(sigmas)
sigmas = torch.cat([sigmas, sigmas.new_zeros([1])])
if discard_penultimate_step:
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
fn = model_chunk_fn if chunk_inds is not None else model_fn
x0 = solver_fn(
noise, fn, sigmas, show_progress=show_progress, **kwargs)
return (x0, intermediates) if return_intermediate is not None else x0
@torch.no_grad()
def sample_sr(self,
noise,
model,
model_kwargs={},
condition_fn=None,
guide_scale=None,
guide_rescale=None,
clamp=None,
percentile=None,
solver='euler_a',
solver_mode='fast',
steps=20,
t_max=None,
t_min=None,
discretization=None,
discard_penultimate_step=None,
return_intermediate=None,
show_progress=False,
seed=-1,
chunk_inds=None,
variant_info=None,
**kwargs):
# sanity check
assert isinstance(steps, (int, torch.LongTensor))
assert t_max is None or (t_max > 0 and t_max <= self.num_timesteps - 1)
assert t_min is None or (t_min >= 0 and t_min < self.num_timesteps - 1)
assert discretization in (None, 'leading', 'linspace', 'trailing')
assert discard_penultimate_step in (None, True, False)
assert return_intermediate in (None, 'x0', 'xt')
# function of diffusion solver
solver_fn = {
'heun': sample_heun,
'dpmpp_2m_sde': sample_dpmpp_2m_sde
}[solver]
# options
schedule = 'karras' if 'karras' in solver else None
discretization = discretization or 'linspace'
seed = seed if seed >= 0 else random.randint(0, 2**31)
if isinstance(steps, torch.LongTensor):
discard_penultimate_step = False
if discard_penultimate_step is None:
discard_penultimate_step = True if solver in (
'dpm2', 'dpm2_ancestral', 'dpmpp_2m_sde', 'dpm2_karras',
'dpm2_ancestral_karras', 'dpmpp_2m_sde_karras') else False
# function for denoising xt to get x0
intermediates = []
def model_fn(xt, sigma, variant_info=None):
# denoising
t = self._sigma_to_t(sigma).repeat(len(xt)).round().long()
x0 = self.denoise(xt, t, None, model, model_kwargs, guide_scale,
guide_rescale, clamp, percentile, variant_info=variant_info)[-2]
# collect intermediate outputs
if return_intermediate == 'xt':
intermediates.append(xt)
elif return_intermediate == 'x0':
print('add intermediate outputs x0')
intermediates.append(x0)
return x0
# mask_cond = model_kwargs[3]['mask_cond']
def model_chunk_fn(xt, sigma, variant_info=None):
# denoising
t = self._sigma_to_t(sigma).repeat(len(xt)).round().long()
O_LEN = chunk_inds[0][-1]-chunk_inds[1][0]
cut_f_ind = O_LEN//2
results_list = []
for i in range(len(chunk_inds)):
ind_start, ind_end = chunk_inds[i]
xt_chunk = xt[:,:,ind_start:ind_end].clone()
model_kwargs[2]['hint_chunk'] = model_kwargs[2]['hint'][:,:,ind_start:ind_end].clone() # new added
cur_f = xt_chunk.size(2)
# model_kwargs[3]['mask_cond'] = mask_cond[:,ind_start:ind_end].clone()
x0_chunk = self.denoise(xt_chunk, t, None, model, model_kwargs, guide_scale,
guide_rescale, clamp, percentile, variant_info=variant_info)[-2]
if i == 0:
results_list.append(x0_chunk[:,:,:cur_f+cut_f_ind-O_LEN])
elif i == len(chunk_inds)-1:
results_list.append(x0_chunk[:,:,cut_f_ind:])
else:
results_list.append(x0_chunk[:,:,cut_f_ind:cur_f+cut_f_ind-O_LEN])
x0 = torch.concat(results_list, dim=2)
torch.cuda.empty_cache()
return x0
# get timesteps
if isinstance(steps, int):
steps += 1 if discard_penultimate_step else 0
t_max = self.num_timesteps - 1 if t_max is None else t_max
t_min = 0 if t_min is None else t_min
# discretize timesteps
if discretization == 'leading':
steps = torch.arange(t_min, t_max + 1,
(t_max - t_min + 1) / steps).flip(0)
elif discretization == 'linspace':
steps = torch.linspace(t_max, t_min, steps)
elif discretization == 'trailing':
steps = torch.arange(t_max, t_min - 1,
-((t_max - t_min + 1) / steps))
if solver_mode == 'fast':
t_mid = 500
steps1 = torch.arange(t_max, t_mid - 1,
-((t_max - t_mid + 1) / 4))
steps2 = torch.arange(t_mid, t_min - 1,
-((t_mid - t_min + 1) / 11))
steps = torch.concat([steps1, steps2])
else:
raise NotImplementedError(
f'{discretization} discretization not implemented')
steps = steps.clamp_(t_min, t_max)
steps = torch.as_tensor(
steps, dtype=torch.float32, device=noise.device)
# get sigmas
sigmas = self._t_to_sigma(steps)
sigmas = torch.cat([sigmas, sigmas.new_zeros([1])])
if schedule == 'karras':
if sigmas[0] == float('inf'):
sigmas = karras_schedule(
n=len(steps) - 1,
sigma_min=sigmas[sigmas > 0].min().item(),
sigma_max=sigmas[sigmas < float('inf')].max().item(),
rho=7.).to(sigmas)
sigmas = torch.cat([
sigmas.new_tensor([float('inf')]), sigmas,
sigmas.new_zeros([1])
])
else:
sigmas = karras_schedule(
n=len(steps),
sigma_min=sigmas[sigmas > 0].min().item(),
sigma_max=sigmas.max().item(),
rho=7.).to(sigmas)
sigmas = torch.cat([sigmas, sigmas.new_zeros([1])])
if discard_penultimate_step:
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
fn = model_chunk_fn if chunk_inds is not None else model_fn
x0 = solver_fn(
noise, fn, sigmas, variant_info=variant_info, show_progress=show_progress, **kwargs)
return (x0, intermediates) if return_intermediate is not None else x0
def _sigma_to_t(self, sigma):
if sigma == float('inf'):
t = torch.full_like(sigma, len(self.sigmas) - 1)
else:
log_sigmas = torch.sqrt(self.sigmas**2 / # noqa
(1 - self.sigmas**2)).log().to(sigma)
log_sigma = sigma.log()
dists = log_sigma - log_sigmas[:, None]
low_idx = dists.ge(0).cumsum(dim=0).argmax(dim=0).clamp(
max=log_sigmas.shape[0] - 2)
high_idx = low_idx + 1
low, high = log_sigmas[low_idx], log_sigmas[high_idx]
w = (low - log_sigma) / (low - high)
w = w.clamp(0, 1)
t = (1 - w) * low_idx + w * high_idx
t = t.view(sigma.shape)
if t.ndim == 0:
t = t.unsqueeze(0)
return t
def _t_to_sigma(self, t):
t = t.float()
low_idx, high_idx, w = t.floor().long(), t.ceil().long(), t.frac()
log_sigmas = torch.sqrt(self.sigmas**2 / # noqa
(1 - self.sigmas**2)).log().to(t)
log_sigma = (1 - w) * log_sigmas[low_idx] + w * log_sigmas[high_idx]
log_sigma[torch.isnan(log_sigma)
| torch.isinf(log_sigma)] = float('inf')
return log_sigma.exp() |