Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,030 Bytes
f0e9666 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import os
import os.path as osp
import random
from typing import Any, Dict
import torch
import torch.cuda.amp as amp
import torch.nn.functional as F
from video_to_video.modules import *
from video_to_video.utils.config import cfg
from video_to_video.diffusion.diffusion_sdedit import GaussianDiffusion
from video_to_video.diffusion.schedules_sdedit import noise_schedule
from video_to_video.utils.logger import get_logger
from diffusers import AutoencoderKLTemporalDecoder
logger = get_logger()
class VideoToVideo_sr():
def __init__(self, opt, device=torch.device(f'cuda:0')):
self.opt = opt
self.device = device # torch.device(f'cuda:0')
# text_encoder
text_encoder = FrozenOpenCLIPEmbedder(device=self.device, pretrained="laion2b_s32b_b79k")
text_encoder.model.to(self.device)
self.text_encoder = text_encoder
logger.info(f'Build encoder with FrozenOpenCLIPEmbedder')
# U-Net with ControlNet
generator = ControlledV2VUNet()
generator = generator.to(self.device)
generator.eval()
cfg.model_path = opt.model_path
load_dict = torch.load(cfg.model_path, map_location='cpu')
if 'state_dict' in load_dict:
load_dict = load_dict['state_dict']
ret = generator.load_state_dict(load_dict, strict=False)
self.generator = generator.half()
logger.info('Load model path {}, with local status {}'.format(cfg.model_path, ret))
# Noise scheduler
sigmas = noise_schedule(
schedule='logsnr_cosine_interp',
n=1000,
zero_terminal_snr=True,
scale_min=2.0,
scale_max=4.0)
diffusion = GaussianDiffusion(sigmas=sigmas)
self.diffusion = diffusion
logger.info('Build diffusion with GaussianDiffusion')
# Temporal VAE
vae = AutoencoderKLTemporalDecoder.from_pretrained(
"stabilityai/stable-video-diffusion-img2vid", subfolder="vae", variant="fp16"
)
vae.eval()
vae.requires_grad_(False)
vae.to(self.device)
self.vae = vae
logger.info('Build Temporal VAE')
torch.cuda.empty_cache()
self.negative_prompt = cfg.negative_prompt
self.positive_prompt = cfg.positive_prompt
negative_y = text_encoder(self.negative_prompt).detach()
self.negative_y = negative_y
def test(self, input: Dict[str, Any], total_noise_levels=1000, \
steps=50, solver_mode='fast', guide_scale=7.5, max_chunk_len=32):
video_data = input['video_data']
y = input['y']
(target_h, target_w) = input['target_res']
video_data = F.interpolate(video_data, [target_h,target_w], mode='bilinear')
logger.info(f'video_data shape: {video_data.shape}')
frames_num, _, h, w = video_data.shape
padding = pad_to_fit(h, w)
video_data = F.pad(video_data, padding, 'constant', 1)
video_data = video_data.unsqueeze(0)
bs = 1
video_data = video_data.to(self.device)
video_data_feature = self.vae_encode(video_data)
torch.cuda.empty_cache()
y = self.text_encoder(y).detach()
with amp.autocast(enabled=True):
t = torch.LongTensor([total_noise_levels-1]).to(self.device)
noised_lr = self.diffusion.diffuse(video_data_feature, t)
model_kwargs = [{'y': y}, {'y': self.negative_y}]
model_kwargs.append({'hint': video_data_feature})
torch.cuda.empty_cache()
chunk_inds = make_chunks(frames_num, interp_f_num=0, max_chunk_len=max_chunk_len) if frames_num > max_chunk_len else None
solver = 'dpmpp_2m_sde' # 'heun' | 'dpmpp_2m_sde'
gen_vid = self.diffusion.sample_sr(
noise=noised_lr,
model=self.generator,
model_kwargs=model_kwargs,
guide_scale=guide_scale,
guide_rescale=0.2,
solver=solver,
solver_mode=solver_mode,
return_intermediate=None,
steps=steps,
t_max=total_noise_levels - 1,
t_min=0,
discretization='trailing',
chunk_inds=chunk_inds,)
torch.cuda.empty_cache()
logger.info(f'sampling, finished.')
vid_tensor_gen = self.vae_decode_chunk(gen_vid, chunk_size=3)
logger.info(f'temporal vae decoding, finished.')
w1, w2, h1, h2 = padding
vid_tensor_gen = vid_tensor_gen[:,:,h1:h+h1,w1:w+w1]
gen_video = rearrange(
vid_tensor_gen, '(b f) c h w -> b c f h w', b=bs)
torch.cuda.empty_cache()
return gen_video.type(torch.float32).cpu()
def temporal_vae_decode(self, z, num_f):
return self.vae.decode(z/self.vae.config.scaling_factor, num_frames=num_f).sample
def vae_decode_chunk(self, z, chunk_size=3):
z = rearrange(z, "b c f h w -> (b f) c h w")
video = []
for ind in range(0, z.shape[0], chunk_size):
num_f = z[ind:ind+chunk_size].shape[0]
video.append(self.temporal_vae_decode(z[ind:ind+chunk_size],num_f))
video = torch.cat(video)
return video
def vae_encode(self, t, chunk_size=1):
num_f = t.shape[1]
t = rearrange(t, "b f c h w -> (b f) c h w")
z_list = []
for ind in range(0,t.shape[0],chunk_size):
z_list.append(self.vae.encode(t[ind:ind+chunk_size]).latent_dist.sample())
z = torch.cat(z_list, dim=0)
z = rearrange(z, "(b f) c h w -> b c f h w", f=num_f)
return z * self.vae.config.scaling_factor
def pad_to_fit(h, w):
BEST_H, BEST_W = 720, 1280
if h < BEST_H:
h1, h2 = _create_pad(h, BEST_H)
elif h == BEST_H:
h1 = h2 = 0
else:
h1 = 0
h2 = int((h + 48) // 64 * 64) + 64 - 48 - h
if w < BEST_W:
w1, w2 = _create_pad(w, BEST_W)
elif w == BEST_W:
w1 = w2 = 0
else:
w1 = 0
w2 = int(w // 64 * 64) + 64 - w
return (w1, w2, h1, h2)
def _create_pad(h, max_len):
h1 = int((max_len - h) // 2)
h2 = max_len - h1 - h
return h1, h2
def make_chunks(f_num, interp_f_num, max_chunk_len, chunk_overlap_ratio=0.5):
MAX_CHUNK_LEN = max_chunk_len
MAX_O_LEN = MAX_CHUNK_LEN * chunk_overlap_ratio
chunk_len = int((MAX_CHUNK_LEN-1)//(1+interp_f_num)*(interp_f_num+1)+1)
o_len = int((MAX_O_LEN-1)//(1+interp_f_num)*(interp_f_num+1)+1)
chunk_inds = sliding_windows_1d(f_num, chunk_len, o_len)
return chunk_inds
def sliding_windows_1d(length, window_size, overlap_size):
stride = window_size - overlap_size
ind = 0
coords = []
while ind<length:
if ind+window_size*1.25>=length:
coords.append((ind,length))
break
else:
coords.append((ind,ind+window_size))
ind += stride
return coords
|