Spaces:
Running
on
Zero
Running
on
Zero
# Adapted from PixArt | |
# | |
# Copyright (C) 2023 PixArt-alpha/PixArt-alpha | |
# | |
# This program is free software: you can redistribute it and/or modify | |
# it under the terms of the GNU Affero General Public License as published | |
# by the Free Software Foundation, either version 3 of the License, or | |
# (at your option) any later version. | |
# | |
# This program is distributed in the hope that it will be useful, | |
# but WITHOUT ANY WARRANTY; without even the implied warranty of | |
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
# GNU Affero General Public License for more details. | |
# | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# -------------------------------------------------------- | |
# References: | |
# PixArt: https://github.com/PixArt-alpha/PixArt-alpha | |
# T5: https://github.com/google-research/text-to-text-transfer-transformer | |
# -------------------------------------------------------- | |
import html | |
import re | |
import ftfy | |
import torch | |
from transformers import AutoTokenizer, T5EncoderModel | |
# from opensora.registry import MODELS | |
class T5Embedder: | |
def __init__( | |
self, | |
device, | |
from_pretrained=None, | |
*, | |
cache_dir=None, | |
hf_token=None, | |
use_text_preprocessing=True, | |
t5_model_kwargs=None, | |
torch_dtype=None, | |
use_offload_folder=None, | |
model_max_length=120, | |
local_files_only=False, | |
): | |
self.device = torch.device(device) | |
self.torch_dtype = torch_dtype or torch.bfloat16 | |
self.cache_dir = cache_dir | |
if t5_model_kwargs is None: | |
t5_model_kwargs = { | |
"low_cpu_mem_usage": True, | |
"torch_dtype": self.torch_dtype, | |
} | |
if use_offload_folder is not None: | |
t5_model_kwargs["offload_folder"] = use_offload_folder | |
t5_model_kwargs["device_map"] = { | |
"shared": self.device, | |
"encoder.embed_tokens": self.device, | |
"encoder.block.0": self.device, | |
"encoder.block.1": self.device, | |
"encoder.block.2": self.device, | |
"encoder.block.3": self.device, | |
"encoder.block.4": self.device, | |
"encoder.block.5": self.device, | |
"encoder.block.6": self.device, | |
"encoder.block.7": self.device, | |
"encoder.block.8": self.device, | |
"encoder.block.9": self.device, | |
"encoder.block.10": self.device, | |
"encoder.block.11": self.device, | |
"encoder.block.12": "disk", | |
"encoder.block.13": "disk", | |
"encoder.block.14": "disk", | |
"encoder.block.15": "disk", | |
"encoder.block.16": "disk", | |
"encoder.block.17": "disk", | |
"encoder.block.18": "disk", | |
"encoder.block.19": "disk", | |
"encoder.block.20": "disk", | |
"encoder.block.21": "disk", | |
"encoder.block.22": "disk", | |
"encoder.block.23": "disk", | |
"encoder.final_layer_norm": "disk", | |
"encoder.dropout": "disk", | |
} | |
else: | |
t5_model_kwargs["device_map"] = { | |
"shared": self.device, | |
"encoder": self.device, | |
} | |
self.use_text_preprocessing = use_text_preprocessing | |
self.hf_token = hf_token | |
self.tokenizer = AutoTokenizer.from_pretrained( | |
from_pretrained, | |
cache_dir=cache_dir, | |
local_files_only=local_files_only, | |
) | |
self.model = T5EncoderModel.from_pretrained( | |
from_pretrained, | |
cache_dir=cache_dir, | |
local_files_only=local_files_only, | |
**t5_model_kwargs, | |
).eval() | |
self.model_max_length = model_max_length | |
def get_text_embeddings(self, texts): | |
text_tokens_and_mask = self.tokenizer( | |
texts, | |
max_length=self.model_max_length, | |
padding="max_length", | |
truncation=True, | |
return_attention_mask=True, | |
add_special_tokens=True, | |
return_tensors="pt", | |
) | |
input_ids = text_tokens_and_mask["input_ids"].to(self.device) | |
attention_mask = text_tokens_and_mask["attention_mask"].to(self.device) | |
with torch.no_grad(): | |
text_encoder_embs = self.model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
)["last_hidden_state"].detach() | |
return text_encoder_embs, attention_mask | |
# @MODELS.register_module("t5") | |
class T5Encoder: | |
def __init__( | |
self, | |
from_pretrained=None, | |
model_max_length=120, | |
device="cuda", | |
dtype=torch.float, | |
cache_dir=None, | |
shardformer=False, | |
local_files_only=False, | |
): | |
assert from_pretrained is not None, "Please specify the path to the T5 model" | |
self.t5 = T5Embedder( | |
device=device, | |
torch_dtype=dtype, | |
from_pretrained=from_pretrained, | |
cache_dir=cache_dir, | |
model_max_length=model_max_length, | |
local_files_only=local_files_only, | |
) | |
self.t5.model.to(dtype=dtype) | |
self.y_embedder = None | |
self.model_max_length = model_max_length | |
self.output_dim = self.t5.model.config.d_model | |
self.dtype = dtype | |
if shardformer: | |
self.shardformer_t5() | |
def shardformer_t5(self): | |
from colossalai.shardformer import ShardConfig, ShardFormer | |
from opensora.acceleration.shardformer.policy.t5_encoder import T5EncoderPolicy | |
from opensora.utils.misc import requires_grad | |
shard_config = ShardConfig( | |
tensor_parallel_process_group=None, | |
pipeline_stage_manager=None, | |
enable_tensor_parallelism=False, | |
enable_fused_normalization=False, | |
enable_flash_attention=False, | |
enable_jit_fused=True, | |
enable_sequence_parallelism=False, | |
enable_sequence_overlap=False, | |
) | |
shard_former = ShardFormer(shard_config=shard_config) | |
optim_model, _ = shard_former.optimize(self.t5.model, policy=T5EncoderPolicy()) | |
self.t5.model = optim_model.to(self.dtype) | |
# ensure the weights are frozen | |
requires_grad(self.t5.model, False) | |
def encode(self, text): | |
caption_embs, emb_masks = self.t5.get_text_embeddings(text) | |
caption_embs = caption_embs[:, None] | |
return dict(y=caption_embs, mask=emb_masks) | |
def null(self, n): | |
null_y = self.y_embedder.y_embedding[None].repeat(n, 1, 1)[:, None] | |
return null_y | |
def basic_clean(text): | |
text = ftfy.fix_text(text) | |
text = html.unescape(html.unescape(text)) | |
return text.strip() | |
BAD_PUNCT_REGEX = re.compile( | |
r"[" + "#®•©™&@·º½¾¿¡§~" + "\)" + "\(" + "\]" + "\[" + "\}" + "\{" + "\|" + "\\" + "\/" + "\*" + r"]{1,}" | |
) # noqa | |
def clean_caption(caption): | |
import urllib.parse as ul | |
from bs4 import BeautifulSoup | |
caption = str(caption) | |
caption = ul.unquote_plus(caption) | |
caption = caption.strip().lower() | |
caption = re.sub("<person>", "person", caption) | |
# urls: | |
caption = re.sub( | |
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa | |
"", | |
caption, | |
) # regex for urls | |
caption = re.sub( | |
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa | |
"", | |
caption, | |
) # regex for urls | |
# html: | |
caption = BeautifulSoup(caption, features="html.parser").text | |
# @<nickname> | |
caption = re.sub(r"@[\w\d]+\b", "", caption) | |
# 31C0—31EF CJK Strokes | |
# 31F0—31FF Katakana Phonetic Extensions | |
# 3200—32FF Enclosed CJK Letters and Months | |
# 3300—33FF CJK Compatibility | |
# 3400—4DBF CJK Unified Ideographs Extension A | |
# 4DC0—4DFF Yijing Hexagram Symbols | |
# 4E00—9FFF CJK Unified Ideographs | |
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption) | |
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption) | |
caption = re.sub(r"[\u3200-\u32ff]+", "", caption) | |
caption = re.sub(r"[\u3300-\u33ff]+", "", caption) | |
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption) | |
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption) | |
caption = re.sub(r"[\u4e00-\u9fff]+", "", caption) | |
####################################################### | |
# все виды тире / all types of dash --> "-" | |
caption = re.sub( | |
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa | |
"-", | |
caption, | |
) | |
# кавычки к одному стандарту | |
caption = re.sub(r"[`´«»“”¨]", '"', caption) | |
caption = re.sub(r"[‘’]", "'", caption) | |
# " | |
caption = re.sub(r""?", "", caption) | |
# & | |
caption = re.sub(r"&", "", caption) | |
# ip adresses: | |
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption) | |
# article ids: | |
caption = re.sub(r"\d:\d\d\s+$", "", caption) | |
# \n | |
caption = re.sub(r"\\n", " ", caption) | |
# "#123" | |
caption = re.sub(r"#\d{1,3}\b", "", caption) | |
# "#12345.." | |
caption = re.sub(r"#\d{5,}\b", "", caption) | |
# "123456.." | |
caption = re.sub(r"\b\d{6,}\b", "", caption) | |
# filenames: | |
caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption) | |
# | |
caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT""" | |
caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT""" | |
caption = re.sub(BAD_PUNCT_REGEX, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT | |
caption = re.sub(r"\s+\.\s+", r" ", caption) # " . " | |
# this-is-my-cute-cat / this_is_my_cute_cat | |
regex2 = re.compile(r"(?:\-|\_)") | |
if len(re.findall(regex2, caption)) > 3: | |
caption = re.sub(regex2, " ", caption) | |
caption = basic_clean(caption) | |
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640 | |
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc | |
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231 | |
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption) | |
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption) | |
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption) | |
caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption) | |
caption = re.sub(r"\bpage\s+\d+\b", "", caption) | |
caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a... | |
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption) | |
caption = re.sub(r"\b\s+\:\s+", r": ", caption) | |
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption) | |
caption = re.sub(r"\s+", " ", caption) | |
caption.strip() | |
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption) | |
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption) | |
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption) | |
caption = re.sub(r"^\.\S+$", "", caption) | |
return caption.strip() | |
def text_preprocessing(text, use_text_preprocessing: bool = True): | |
if use_text_preprocessing: | |
# The exact text cleaning as was in the training stage: | |
text = clean_caption(text) | |
text = clean_caption(text) | |
return text | |
else: | |
return text.lower().strip() |