Solitude-liu's picture
Add parameter tuning
11cda7a
import os
import torch
from argparse import ArgumentParser, Namespace
import json
from typing import Any, Dict, List, Mapping, Tuple
from easydict import EasyDict
from video_to_video.video_to_video_model import VideoToVideo_sr
from video_to_video.utils.seed import setup_seed
from video_to_video.utils.logger import get_logger
from video_super_resolution.color_fix import adain_color_fix
from inference_utils import *
logger = get_logger()
class STAR_sr():
def __init__(self,
result_dir='./results/',
file_name='000_video.mp4',
model_path='./pretrained_weight',
solver_mode='fast',
steps=15,
guide_scale=7.5,
upscale=4,
max_chunk_len=32,
variant_info=None,
chunk_size=3,
):
self.model_path=model_path
logger.info('checkpoint_path: {}'.format(self.model_path))
self.result_dir = result_dir
self.file_name = file_name
os.makedirs(self.result_dir, exist_ok=True)
model_cfg = EasyDict(__name__='model_cfg')
model_cfg.model_path = self.model_path
model_cfg.chunk_size = chunk_size
self.model = VideoToVideo_sr(model_cfg)
steps = 15 if solver_mode == 'fast' else steps
self.solver_mode=solver_mode
self.steps=steps
self.guide_scale=guide_scale
self.upscale = upscale
self.max_chunk_len=max_chunk_len
self.variant_info=variant_info
def enhance_a_video(self, video_path, prompt):
logger.info('input video path: {}'.format(video_path))
text = prompt
logger.info('text: {}'.format(text))
caption = text + self.model.positive_prompt
input_frames, input_fps = load_video(video_path)
in_f_num = len(input_frames)
logger.info('input frames length: {}'.format(in_f_num))
logger.info('input fps: {}'.format(input_fps))
video_data = preprocess(input_frames)
_, _, h, w = video_data.shape
logger.info('input resolution: {}'.format((h, w)))
target_h, target_w = h * self.upscale, w * self.upscale # adjust_resolution(h, w, up_scale=4)
logger.info('target resolution: {}'.format((target_h, target_w)))
pre_data = {'video_data': video_data, 'y': caption}
pre_data['target_res'] = (target_h, target_w)
total_noise_levels = 900
setup_seed(666)
with torch.no_grad():
data_tensor = collate_fn(pre_data, 'cuda:0')
output = self.model.test(data_tensor, total_noise_levels, steps=self.steps, \
solver_mode=self.solver_mode, guide_scale=self.guide_scale, \
max_chunk_len=self.max_chunk_len
)
output = tensor2vid(output)
# Using color fix
output = adain_color_fix(output, video_data)
save_video(output, self.result_dir, self.file_name, fps=input_fps)
return os.path.join(self.result_dir, self.file_name)
def parse_args():
parser = ArgumentParser()
parser.add_argument("--input_path", required=True, type=str, help="input video path")
parser.add_argument("--save_dir", type=str, default='results', help="save directory")
parser.add_argument("--file_name", type=str, help="file name")
parser.add_argument("--model_path", type=str, default='./pretrained_weight/model.pt', help="model path")
parser.add_argument("--prompt", type=str, default='a good video', help="prompt")
parser.add_argument("--upscale", type=int, default=4, help='up-scale')
parser.add_argument("--max_chunk_len", type=int, default=32, help='max_chunk_len')
parser.add_argument("--variant_info", type=str, default=None, help='information of inference strategy')
parser.add_argument("--cfg", type=float, default=7.5)
parser.add_argument("--solver_mode", type=str, default='fast', help='fast | normal')
parser.add_argument("--steps", type=int, default=15)
return parser.parse_args()
def main():
args = parse_args()
input_path = args.input_path
prompt = args.prompt
model_path = args.model_path
save_dir = args.save_dir
file_name = args.file_name
upscale = args.upscale
max_chunk_len = args.max_chunk_len
steps = args.steps
solver_mode = args.solver_mode
guide_scale = args.cfg
assert solver_mode in ('fast', 'normal')
star_sr = STAR_sr(
result_dir=save_dir,
file_name=file_name, # new added
model_path=model_path,
solver_mode=solver_mode,
steps=steps,
guide_scale=guide_scale,
upscale=upscale,
max_chunk_len=max_chunk_len,
variant_info=None,
)
star_sr.enhance_a_video(input_path, prompt)
if __name__ == '__main__':
main()