import spaces import os import gradio as gr from video_super_resolution.scripts.inference_sr import VEnhancer_sr examples = [ ["prompts/astronaut.mp4", "An astronaut flying in space, featuring a steady and smooth perspective", 4, 24, 250], ["prompts/cat.mp4", "A cat wearing sunglasses at a pool", 4, 24, 250], ["prompts/fish.mp4", "Clown fish swimming through the coral reef", 4, 24, 300], ["prompts/iron_man.mp4", "Iron Man flying in the sky", 4, 24, 250], ["prompts/raccoon.mp4", "A cute raccoon playing guitar in a boat on the ocean", 4, 24, 250], ["prompts/shanghai.mp4", "The bund Shanghai by Hokusai, in the style of Ukiyo", 4, 24, 250], ["prompts/gwen.mp4", "Gwen Stacy reading a book, black and white", 4, 24, 250], ] # Define a GPU-decorated function for enhancement @spaces.GPU(duration=1200) def enhance_with_gpu(input_video, input_text): return venhancer.enhance_a_video(input_video, input_text) def venhancer_demo(result_dir="./tmp/"): css = """#input_video {max-width: 1024px !important} #output_vid {max-width: 2048px; max-height:1280px}""" global venhancer venhancer = VEnhancer_sr(result_dir) with gr.Blocks(analytics_enabled=False, css=css) as venhancer_iface: gr.Markdown( "

VEnhancer

\ [ArXiv] \ [Project Page] \ [Github]
" ) with gr.Tab(label="VEnhancer"): with gr.Column(): with gr.Row(): with gr.Column(): with gr.Row(): input_video = gr.Video(label="Input Video", elem_id="input_video") with gr.Row(): input_text = gr.Text(label="Prompts") end_btn = gr.Button("Generate") with gr.Row(): output_video = gr.Video( label="Generated Video", elem_id="output_vid", autoplay=True, show_share_button=True ) gr.Examples( examples=examples, inputs=[input_video, input_text], outputs=[output_video], fn=enhance_with_gpu, # Use the GPU-decorated function cache_examples=False, ) end_btn.click( inputs=[input_video, input_text], outputs=[output_video], fn=enhance_with_gpu, # Use the GPU-decorated function ) return venhancer_iface if __name__ == "__main__": result_dir = os.path.join("./", "results") venhancer_iface = venhancer_demo(result_dir) venhancer_iface.queue(max_size=12) venhancer_iface.launch(max_threads=1)