# Adapted from PixArt # # Copyright (C) 2023 PixArt-alpha/PixArt-alpha # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # References: # PixArt: https://github.com/PixArt-alpha/PixArt-alpha # T5: https://github.com/google-research/text-to-text-transfer-transformer # -------------------------------------------------------- import html import re import ftfy import torch from transformers import AutoTokenizer, T5EncoderModel # from opensora.registry import MODELS class T5Embedder: def __init__( self, device, from_pretrained=None, *, cache_dir=None, hf_token=None, use_text_preprocessing=True, t5_model_kwargs=None, torch_dtype=None, use_offload_folder=None, model_max_length=120, local_files_only=False, ): self.device = torch.device(device) self.torch_dtype = torch_dtype or torch.bfloat16 self.cache_dir = cache_dir if t5_model_kwargs is None: t5_model_kwargs = { "low_cpu_mem_usage": True, "torch_dtype": self.torch_dtype, } if use_offload_folder is not None: t5_model_kwargs["offload_folder"] = use_offload_folder t5_model_kwargs["device_map"] = { "shared": self.device, "encoder.embed_tokens": self.device, "encoder.block.0": self.device, "encoder.block.1": self.device, "encoder.block.2": self.device, "encoder.block.3": self.device, "encoder.block.4": self.device, "encoder.block.5": self.device, "encoder.block.6": self.device, "encoder.block.7": self.device, "encoder.block.8": self.device, "encoder.block.9": self.device, "encoder.block.10": self.device, "encoder.block.11": self.device, "encoder.block.12": "disk", "encoder.block.13": "disk", "encoder.block.14": "disk", "encoder.block.15": "disk", "encoder.block.16": "disk", "encoder.block.17": "disk", "encoder.block.18": "disk", "encoder.block.19": "disk", "encoder.block.20": "disk", "encoder.block.21": "disk", "encoder.block.22": "disk", "encoder.block.23": "disk", "encoder.final_layer_norm": "disk", "encoder.dropout": "disk", } else: t5_model_kwargs["device_map"] = { "shared": self.device, "encoder": self.device, } self.use_text_preprocessing = use_text_preprocessing self.hf_token = hf_token self.tokenizer = AutoTokenizer.from_pretrained( from_pretrained, cache_dir=cache_dir, local_files_only=local_files_only, ) self.model = T5EncoderModel.from_pretrained( from_pretrained, cache_dir=cache_dir, local_files_only=local_files_only, **t5_model_kwargs, ).eval() self.model_max_length = model_max_length def get_text_embeddings(self, texts): text_tokens_and_mask = self.tokenizer( texts, max_length=self.model_max_length, padding="max_length", truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors="pt", ) input_ids = text_tokens_and_mask["input_ids"].to(self.device) attention_mask = text_tokens_and_mask["attention_mask"].to(self.device) with torch.no_grad(): text_encoder_embs = self.model( input_ids=input_ids, attention_mask=attention_mask, )["last_hidden_state"].detach() return text_encoder_embs, attention_mask # @MODELS.register_module("t5") class T5Encoder: def __init__( self, from_pretrained=None, model_max_length=120, device="cuda", dtype=torch.float, cache_dir=None, shardformer=False, local_files_only=False, ): assert from_pretrained is not None, "Please specify the path to the T5 model" self.t5 = T5Embedder( device=device, torch_dtype=dtype, from_pretrained=from_pretrained, cache_dir=cache_dir, model_max_length=model_max_length, local_files_only=local_files_only, ) self.t5.model.to(dtype=dtype) self.y_embedder = None self.model_max_length = model_max_length self.output_dim = self.t5.model.config.d_model self.dtype = dtype if shardformer: self.shardformer_t5() def shardformer_t5(self): from colossalai.shardformer import ShardConfig, ShardFormer from opensora.acceleration.shardformer.policy.t5_encoder import T5EncoderPolicy from opensora.utils.misc import requires_grad shard_config = ShardConfig( tensor_parallel_process_group=None, pipeline_stage_manager=None, enable_tensor_parallelism=False, enable_fused_normalization=False, enable_flash_attention=False, enable_jit_fused=True, enable_sequence_parallelism=False, enable_sequence_overlap=False, ) shard_former = ShardFormer(shard_config=shard_config) optim_model, _ = shard_former.optimize(self.t5.model, policy=T5EncoderPolicy()) self.t5.model = optim_model.to(self.dtype) # ensure the weights are frozen requires_grad(self.t5.model, False) def encode(self, text): caption_embs, emb_masks = self.t5.get_text_embeddings(text) caption_embs = caption_embs[:, None] return dict(y=caption_embs, mask=emb_masks) def null(self, n): null_y = self.y_embedder.y_embedding[None].repeat(n, 1, 1)[:, None] return null_y def basic_clean(text): text = ftfy.fix_text(text) text = html.unescape(html.unescape(text)) return text.strip() BAD_PUNCT_REGEX = re.compile( r"[" + "#®•©™&@·º½¾¿¡§~" + "\)" + "\(" + "\]" + "\[" + "\}" + "\{" + "\|" + "\\" + "\/" + "\*" + r"]{1,}" ) # noqa def clean_caption(caption): import urllib.parse as ul from bs4 import BeautifulSoup caption = str(caption) caption = ul.unquote_plus(caption) caption = caption.strip().lower() caption = re.sub("", "person", caption) # urls: caption = re.sub( r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa "", caption, ) # regex for urls caption = re.sub( r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa "", caption, ) # regex for urls # html: caption = BeautifulSoup(caption, features="html.parser").text # @ caption = re.sub(r"@[\w\d]+\b", "", caption) # 31C0—31EF CJK Strokes # 31F0—31FF Katakana Phonetic Extensions # 3200—32FF Enclosed CJK Letters and Months # 3300—33FF CJK Compatibility # 3400—4DBF CJK Unified Ideographs Extension A # 4DC0—4DFF Yijing Hexagram Symbols # 4E00—9FFF CJK Unified Ideographs caption = re.sub(r"[\u31c0-\u31ef]+", "", caption) caption = re.sub(r"[\u31f0-\u31ff]+", "", caption) caption = re.sub(r"[\u3200-\u32ff]+", "", caption) caption = re.sub(r"[\u3300-\u33ff]+", "", caption) caption = re.sub(r"[\u3400-\u4dbf]+", "", caption) caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption) caption = re.sub(r"[\u4e00-\u9fff]+", "", caption) ####################################################### # все виды тире / all types of dash --> "-" caption = re.sub( r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa "-", caption, ) # кавычки к одному стандарту caption = re.sub(r"[`´«»“”¨]", '"', caption) caption = re.sub(r"[‘’]", "'", caption) # " caption = re.sub(r""?", "", caption) # & caption = re.sub(r"&", "", caption) # ip adresses: caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption) # article ids: caption = re.sub(r"\d:\d\d\s+$", "", caption) # \n caption = re.sub(r"\\n", " ", caption) # "#123" caption = re.sub(r"#\d{1,3}\b", "", caption) # "#12345.." caption = re.sub(r"#\d{5,}\b", "", caption) # "123456.." caption = re.sub(r"\b\d{6,}\b", "", caption) # filenames: caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption) # caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT""" caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT""" caption = re.sub(BAD_PUNCT_REGEX, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT caption = re.sub(r"\s+\.\s+", r" ", caption) # " . " # this-is-my-cute-cat / this_is_my_cute_cat regex2 = re.compile(r"(?:\-|\_)") if len(re.findall(regex2, caption)) > 3: caption = re.sub(regex2, " ", caption) caption = basic_clean(caption) caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640 caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231 caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption) caption = re.sub(r"(free\s)?download(\sfree)?", "", caption) caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption) caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption) caption = re.sub(r"\bpage\s+\d+\b", "", caption) caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a... caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption) caption = re.sub(r"\b\s+\:\s+", r": ", caption) caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption) caption = re.sub(r"\s+", " ", caption) caption.strip() caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption) caption = re.sub(r"^[\'\_,\-\:;]", r"", caption) caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption) caption = re.sub(r"^\.\S+$", "", caption) return caption.strip() def text_preprocessing(text, use_text_preprocessing: bool = True): if use_text_preprocessing: # The exact text cleaning as was in the training stage: text = clean_caption(text) text = clean_caption(text) return text else: return text.lower().strip()