Spaces:
Runtime error
Runtime error
File size: 4,364 Bytes
f5dc1f6 ede3a27 9fcc8d4 0cdf39f ede3a27 f5dc1f6 631aac8 f5dc1f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
import streamlit as st
import pandas as pd
from autosklearn.regression import AutoSklearnRegressor
import base64
import json
import pickle
import uuid
import re
from io import BytesIO
import numpy as np
def to_excel(df:pd.DataFrame):
output = BytesIO()
writer = pd.ExcelWriter(output, engine='xlsxwriter')
df.to_excel(writer, index=False)
writer.save()
processed_data = output.getvalue()
return processed_data
def download_button(object_to_download, download_filename, button_text, file_extension,pickle_it=False):
"""
Generates a link to download the given object_to_download.
Params:
------
object_to_download: The object to be downloaded.
download_filename (str): filename and extension of file. e.g. mydata.csv,
some_txt_output.txt download_link_text (str): Text to display for download
link.
button_text (str): Text to display on download button (e.g. 'click here to download file')
pickle_it (bool): If True, pickle file.
Returns:
-------
(str): the anchor tag to download object_to_download
Examples:
--------
download_link(your_df, 'YOUR_DF.csv', 'Click to download data!')
download_link(your_str, 'YOUR_STRING.txt', 'Click to download text!')
"""
if pickle_it:
try:
object_to_download = pickle.dumps(object_to_download)
except pickle.PicklingError as e:
st.write(e)
return None
else:
if isinstance(object_to_download, bytes):
pass
elif isinstance(object_to_download, pd.DataFrame):
if file_extension == ".csv":
object_to_download = object_to_download.to_csv(index=False)
else:
object_to_download = to_excel(object_to_download)
# Try JSON encode for everything else
else:
object_to_download = json.dumps(object_to_download)
try:
# some strings <-> bytes conversions necessary here
b64 = base64.b64encode(object_to_download.encode()).decode()
except AttributeError as e:
b64 = base64.b64encode(object_to_download).decode()
button_uuid = str(uuid.uuid4()).replace('-', '')
button_id = re.sub('\d+', '', button_uuid)
custom_css = f"""
<style>
#{button_id} {{
display: inline-flex;
align-items: center;
justify-content: center;
background-color: rgb(255, 255, 255);
color: rgb(38, 39, 48);
padding: .5rem .75rem;
position: relative;
text-decoration: none;
border-radius: 4px;
border-width: 1px;
border-style: solid;
border-color: rgb(230, 234, 241);
border-image: initial;
}}
#{button_id}:hover {{
border-color: rgb(246, 51, 102);
color: rgb(246, 51, 102);
}}
#{button_id}:active {{
box-shadow: none;
background-color: rgb(246, 51, 102);
color: white;
}}
</style> """
dl_link = custom_css + f'<a download="{download_filename+file_extension}" id="{button_id}" href="data:file/txt;base64,{b64}">{button_text}</a><br></br>'
#dl_link = custom_css + f'<a download="{download_filename+file_extension}" id="{button_id}" data:application/octet-stream;base64,{b64}">{button_text}</a><br></br>'
return dl_link
file_upload = st.file_uploader("Upload a csv file", type="csv")
if file_upload is not None:
data = pd.read_csv(file_upload)
#column = data["S11"].iloc[1:].values
column = data["S11"].values
#column = column.reshape(1,-1)
st.write(column.shape)
with open("automl4.pkl", "rb") as f:
model = pickle.load(f)
pred_clip = model.predict(column)
pred_clip = np.clip(pred_clip, [0.2,0.4,3.9,0.2,13.9,13.8,13.2],[1.01,1.21,4.71,0.8,14.701,14.201,14.001])
predictions = pd.DataFrame(pred_clip.tolist(), columns = ["w1","w2","w3","s1","l1","l2","l3"])
is_download = st.checkbox("Download predictions", value=False)
if is_download:
href = download_button(predictions, "predictions", "Download", ".csv")
st.markdown(href, unsafe_allow_html=True)
|