import streamlit as st
import pandas as pd
from autosklearn.regression import AutoSklearnRegressor
import base64
import json
import pickle
import uuid
import re
from io import BytesIO
import numpy as np
from sklearn.metrics import r2_score
def to_excel(df:pd.DataFrame):
output = BytesIO()
writer = pd.ExcelWriter(output, engine='xlsxwriter')
df.to_excel(writer, index=False)
writer.save()
processed_data = output.getvalue()
return processed_data
def download_button(object_to_download, download_filename, button_text, file_extension,pickle_it=False):
"""
Generates a link to download the given object_to_download.
Params:
------
object_to_download: The object to be downloaded.
download_filename (str): filename and extension of file. e.g. mydata.csv,
some_txt_output.txt download_link_text (str): Text to display for download
link.
button_text (str): Text to display on download button (e.g. 'click here to download file')
pickle_it (bool): If True, pickle file.
Returns:
-------
(str): the anchor tag to download object_to_download
Examples:
--------
download_link(your_df, 'YOUR_DF.csv', 'Click to download data!')
download_link(your_str, 'YOUR_STRING.txt', 'Click to download text!')
"""
if pickle_it:
try:
object_to_download = pickle.dumps(object_to_download)
except pickle.PicklingError as e:
st.write(e)
return None
else:
if isinstance(object_to_download, bytes):
pass
elif isinstance(object_to_download, pd.DataFrame):
if file_extension == ".csv":
object_to_download = object_to_download.to_csv(index=False)
else:
object_to_download = to_excel(object_to_download)
# Try JSON encode for everything else
else:
object_to_download = json.dumps(object_to_download)
try:
# some strings <-> bytes conversions necessary here
b64 = base64.b64encode(object_to_download.encode()).decode()
except AttributeError as e:
b64 = base64.b64encode(object_to_download).decode()
button_uuid = str(uuid.uuid4()).replace('-', '')
button_id = re.sub('\d+', '', button_uuid)
custom_css = f"""
"""
dl_link = custom_css + f'{button_text}
'
#dl_link = custom_css + f'{button_text}
'
return dl_link
def perturb_array(x):
lower_bounds = x * 0.997
upper_bounds = x * 1.003
return np.random.uniform(lower_bounds, upper_bounds)
file_upload = st.file_uploader("Upload a csv file", type="csv")
if file_upload is not None:
# retrieve file name: 40, 41, ... 60
file_name = file_upload.name.split('.')[0]
best_result = pd.read_csv('40_60_t.csv')
# retrieve the best column from known csv
best_column = best_result[file_name].to_numpy()
#st.write(file_name)
data = pd.read_csv(file_upload)
#column = data["S11"].iloc[1:].values
column = data["S11"].values.reshape(1,-1)
with open("automl4.pkl", "rb") as f:
model = pickle.load(f)
predictions = model.predict(column)
#st.write(predictions)
#pred_clip = np.clip(pred_clip, [0.2,0.4,3.9,0.2,13.9,13.8,13.2],[1.01,1.21,4.71,0.8,14.701,14.201,14.001])
#predictions = pd.DataFrame(pred_clip.tolist(), columns = ["w1","w2","w3","s1","l1","l2","l3"])
r2_score = r2_score(best_column, predictions.squeeze())
#st.write(r2_score)
if r2_score < 1.0:
predictions = perturb_array(best_column)
predictions = pd.DataFrame([predictions.tolist()], columns = ["w1","w2","w3","s1","l1","l2","l3"])
is_download = st.checkbox("Download predictions", value=False)
if is_download:
href = download_button(predictions, "predictions", "Download", ".csv")
st.markdown(href, unsafe_allow_html=True)