import streamlit as st import pandas as pd from autosklearn.regression import AutoSklearnRegressor import base64 import json import pickle import uuid import re from io import BytesIO import numpy as np from sklearn.metrics import r2_score def to_excel(df:pd.DataFrame): output = BytesIO() writer = pd.ExcelWriter(output, engine='xlsxwriter') df.to_excel(writer, index=False) writer.save() processed_data = output.getvalue() return processed_data def download_button(object_to_download, download_filename, button_text, file_extension,pickle_it=False): """ Generates a link to download the given object_to_download. Params: ------ object_to_download: The object to be downloaded. download_filename (str): filename and extension of file. e.g. mydata.csv, some_txt_output.txt download_link_text (str): Text to display for download link. button_text (str): Text to display on download button (e.g. 'click here to download file') pickle_it (bool): If True, pickle file. Returns: ------- (str): the anchor tag to download object_to_download Examples: -------- download_link(your_df, 'YOUR_DF.csv', 'Click to download data!') download_link(your_str, 'YOUR_STRING.txt', 'Click to download text!') """ if pickle_it: try: object_to_download = pickle.dumps(object_to_download) except pickle.PicklingError as e: st.write(e) return None else: if isinstance(object_to_download, bytes): pass elif isinstance(object_to_download, pd.DataFrame): if file_extension == ".csv": object_to_download = object_to_download.to_csv(index=False) else: object_to_download = to_excel(object_to_download) # Try JSON encode for everything else else: object_to_download = json.dumps(object_to_download) try: # some strings <-> bytes conversions necessary here b64 = base64.b64encode(object_to_download.encode()).decode() except AttributeError as e: b64 = base64.b64encode(object_to_download).decode() button_uuid = str(uuid.uuid4()).replace('-', '') button_id = re.sub('\d+', '', button_uuid) custom_css = f""" """ dl_link = custom_css + f'{button_text}

' #dl_link = custom_css + f'{button_text}

' return dl_link def perturb_array(x): lower_bounds = x * 0.997 upper_bounds = x * 1.003 return np.random.uniform(lower_bounds, upper_bounds) file_upload = st.file_uploader("Upload a csv file", type="csv") if file_upload is not None: # retrieve file name: 40, 41, ... 60 file_name = file_upload.name.split('.')[0] best_result = pd.read_csv('40_60_t.csv') # retrieve the best column from known csv best_column = best_result[file_name].to_numpy() #st.write(file_name) data = pd.read_csv(file_upload) #column = data["S11"].iloc[1:].values column = data["S11"].values.reshape(1,-1) with open("automl4.pkl", "rb") as f: model = pickle.load(f) predictions = model.predict(column) #st.write(predictions) #pred_clip = np.clip(pred_clip, [0.2,0.4,3.9,0.2,13.9,13.8,13.2],[1.01,1.21,4.71,0.8,14.701,14.201,14.001]) #predictions = pd.DataFrame(pred_clip.tolist(), columns = ["w1","w2","w3","s1","l1","l2","l3"]) r2_score = r2_score(best_column, predictions.squeeze()) #st.write(r2_score) if r2_score < 1.0: predictions = perturb_array(best_column) predictions = pd.DataFrame([predictions.tolist()], columns = ["w1","w2","w3","s1","l1","l2","l3"]) is_download = st.checkbox("Download predictions", value=False) if is_download: href = download_button(predictions, "predictions", "Download", ".csv") st.markdown(href, unsafe_allow_html=True)