ShishuTripathi's picture
Update app.py
7597d53
import torch
import gradio as gr
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer ,pipeline, BitsAndBytesConfig
config = PeftConfig.from_pretrained("ShishuTripathi/entity_coder")
model = AutoModelForCausalLM.from_pretrained("ybelkada/falcon-7b-sharded-bf16",trust_remote_code=True)
model = PeftModel.from_pretrained(model,"ShishuTripathi/entity_coder")
tokenizer = AutoTokenizer.from_pretrained("ShishuTripathi/entity_coder")
generator = pipeline('text-generation' , model = model, tokenizer =tokenizer, max_length = 50)
def text_generation(input_text):
prompt = f"### Narrative: {input_text} \n ### Reported Term:"
out = generator(prompt)
output = out[0]['generated_text'].replace('|endoftext|',' ').strip()
return output
title = "Preferred Term Extractor and Coder"
description = "The term used to describe an adverse event in the Database of Adverse Event Notifications - medicines is the MedDRA 'preferred term', which describes a single medical concept"
gr.Interface(
text_generation,
[gr.inputs.Textbox(lines=2, label="Enter Narrative or Phrase")],
[gr.outputs.Textbox(type="text", label="Extracted Preffered Term")],
title=title,
description=description,
theme="huggingface"
).launch()