Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
from peft import PeftModel, PeftConfig | |
from transformers import AutoModelForCausalLM, AutoTokenizer ,pipeline, BitsAndBytesConfig | |
config = PeftConfig.from_pretrained("ShishuTripathi/entity_coder") | |
model = AutoModelForCausalLM.from_pretrained("ybelkada/falcon-7b-sharded-bf16",trust_remote_code=True) | |
model = PeftModel.from_pretrained(model,"ShishuTripathi/entity_coder") | |
tokenizer = AutoTokenizer.from_pretrained("ShishuTripathi/entity_coder") | |
generator = pipeline('text-generation' , model = model, tokenizer =tokenizer, max_length = 50) | |
def text_generation(input_text): | |
prompt = f"### Narrative: {input_text} \n ### Reported Term:" | |
out = generator(prompt) | |
output = out[0]['generated_text'].replace('|endoftext|',' ').strip() | |
return output | |
title = "Preferred Term Extractor and Coder" | |
description = "The term used to describe an adverse event in the Database of Adverse Event Notifications - medicines is the MedDRA 'preferred term', which describes a single medical concept" | |
gr.Interface( | |
text_generation, | |
[gr.inputs.Textbox(lines=2, label="Enter Narrative or Phrase")], | |
[gr.outputs.Textbox(type="text", label="Extracted Preffered Term")], | |
title=title, | |
description=description, | |
theme="huggingface" | |
).launch() |