Shiv1143 commited on
Commit
f430a98
·
verified ·
1 Parent(s): 8adda05

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +81 -0
app.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ from src.data_preparation import load_data
4
+ from src.model import initialize_openai, fine_tune_model, extract_keywords, rate_skills, compare_candidates
5
+
6
+ st.title("MLE Trial Task")
7
+
8
+ # Upload OpenAI API Key
9
+ api_key = st.text_input("Enter your OpenAI API Key", type="password")
10
+ initialize_openai(api_key)
11
+
12
+ # Load training data
13
+ data = load_data("data/train_dataset.csv")
14
+
15
+ # Fine-tune the model
16
+ fine_tuned_model = "gpt-4o-2024-08-06"
17
+
18
+ # Streamlit app sections
19
+ st.sidebar.title("Navigation")
20
+ page = st.sidebar.radio("Go to", ["Evaluate Test Data", "Test with Random Data"])
21
+
22
+ if page == "Evaluate Test Data":
23
+ st.title("Evaluate Test Data")
24
+
25
+ uploaded_test_file = st.file_uploader("Upload Test Data CSV", type="csv")
26
+
27
+ if uploaded_test_file:
28
+ test_data = pd.read_csv(uploaded_test_file)
29
+
30
+ correct_predictions = 0
31
+ total_predictions = len(test_data)
32
+
33
+ for index, row in test_data.iterrows():
34
+ job_description = row['role']
35
+ candidateA_resume = row['candidateAResume']
36
+ candidateB_resume = row['candidateBResume']
37
+ candidateA_transcript = row['candidateATranscript']
38
+ candidateB_transcript = row['candidateBTranscript']
39
+ winner_id = row['winnerId']
40
+
41
+ candidateA_details = {
42
+ "keywords": extract_keywords(candidateA_resume, job_description, fine_tuned_model),
43
+ "skills": rate_skills(candidateA_transcript, job_description, fine_tuned_model),
44
+ "candidate_id": row['candidateAId']
45
+ }
46
+ candidateB_details = {
47
+ "keywords": extract_keywords(candidateB_resume, job_description, fine_tuned_model),
48
+ "skills": rate_skills(candidateB_transcript, job_description, fine_tuned_model),
49
+ "candidate_id": row['candidateBId']
50
+ }
51
+
52
+ preferred_candidate = compare_candidates(candidateA_details, candidateB_details, job_description, fine_tuned_model)
53
+ print(f"Preferred Candidate: {preferred_candidate}", f"Winner ID: {winner_id}")
54
+ if preferred_candidate == winner_id:
55
+ correct_predictions += 1
56
+
57
+ accuracy = correct_predictions / total_predictions
58
+ st.write(f"Accuracy: {accuracy}")
59
+ st.write(f"Preferred Candidates: {correct_predictions} out of {total_predictions}")
60
+
61
+ elif page == "Test with Random Data":
62
+ st.title("Test with Random Data")
63
+
64
+ job_description = st.text_area("Job Description")
65
+ candidateA_resume = st.text_area("Candidate A Resume")
66
+ candidateB_resume = st.text_area("Candidate B Resume")
67
+ candidateA_transcript = st.text_area("Candidate A Transcript")
68
+ candidateB_transcript = st.text_area("Candidate B Transcript")
69
+
70
+ if st.button("Compare Candidates"):
71
+ candidateA_details = {
72
+ "keywords": extract_keywords(candidateA_resume, job_description, fine_tuned_model),
73
+ "skills": rate_skills(candidateA_transcript, job_description, fine_tuned_model)
74
+ }
75
+ candidateB_details = {
76
+ "keywords": extract_keywords(candidateB_resume, job_description, fine_tuned_model),
77
+ "skills": rate_skills(candidateB_transcript, job_description, fine_tuned_model)
78
+ }
79
+
80
+ preferred_candidate = compare_candidates(candidateA_details, candidateB_details, job_description, fine_tuned_model)
81
+ st.write(f"Preferred Candidate: {preferred_candidate}")