File size: 1,323 Bytes
3f3ca03 f7ea213 3f3ca03 626e7c3 192a8bd 626e7c3 6e7a9e7 f7ea213 6e7a9e7 f7ea213 626e7c3 3f3ca03 06d0b3f 626e7c3 3f3ca03 f7ea213 6e7a9e7 4cc3a06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import gradio as gr
import torch
from score_fincat import score_fincat
from sus_fls import get_sustainability,fls
from Cuad_others import quad,summarize_text,fin_ner
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def load_questions():
questions = []
with open('questionshort.txt') as f:
questions = f.readlines()
return questions
questions = load_questions()
answer_main=''
def mainFun(query,file):
text=''
with open(file.name) as f:
text = f.read()
answer_main,answer_p=quad(query,file)
return text,answer_p,summarize_text(answer_main)
demo = gr.Blocks()
with demo:
txt_file = gr.File(label='CONTRACT')
text = gr.Textbox(lines=10)
selected_ques=gr.Dropdown(choices=questions,label='SEARCH QUERY')
b1 = gr.Button("Analyze File")
answer = gr.Textbox(lines=2)
summarize = gr.Textbox(lines=2)
b1.click(mainFun, inputs=[selected_ques,txt_file], outputs=[text,answer,summarize])
b2=gr.Button("Get NER")
label_ner = gr.Label()
b1.click(fin_ner,inputs=answer_main,outputs=gr.HighlightedText())
b3=gr.Button("Get CLAIM")
label_claim = gr.Label()
b4=gr.Button("Get SUSTAINABILITY")
label_sus = gr.Label()
b5=gr.Button("Get FLS")
label_fls = gr.Label()
demo.launch() |