Spaces:
Build error
Build error
File size: 2,602 Bytes
e2fa5d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
!pip3 install numpy
!pip3 install pandas
!pip3 install sklearn
!pip3 install nltk
import numpy as np
import pandas as pd
import pandas as pd
import numpy as np
import re
import nltk
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
nltk.download('stopwords')
print(stopwords.words('english'))
from google.colab import drive
drive.mount('/content/drive')
news_df = pd.read_csv('/content/drive/MyDrive/Mini project/train.csv')
news_df.head()
news_df.shape
news_df.info()
news_df.isna().sum()
news_df = news_df.fillna('')
news_df['article'] = news_df['title'] + news_df['author']
news_df
news_df.drop(columns=['id'], inplace=True)
news_df
news_df["author"].value_counts()
X = news_df.drop(columns='label', axis=1)
Y = news_df['label']
X
Y
p_stemming = PorterStemmer()
def stemming(content):
stemmed_word = re.sub('[^a-zA-Z]',' ',content)
stemmed_word = stemmed_word.lower()
stemmed_word = stemmed_word.split()
stemmed_word = [p_stemming.stem(word) for word in stemmed_word if not word in stopwords.words('english')]
stemmed_word = ' '.join(stemmed_word)
return stemmed_word
news_df['article'] = news_df['article'].apply(stemming)
news_df['article']
X = news_df['article'].values
X
Y = news_df['label'].values
Y
X
vectorizer = TfidfVectorizer()
vectorizer.fit(X)
X = vectorizer.transform(X)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2, stratify = Y, random_state = 1)
ml_model = LogisticRegression()
ml_model.fit(X_train, Y_train)
X_train_predict = ml_model.predict(X_train)
train_data_accuracy = accuracy_score(X_train_predict, Y_train)
percent_tr_accuracy = train_data_accuracy * 100
print("Accuracy for Train data: ", percent_tr_accuracy)
X_test_predict = ml_model.predict(X_test)
test_data_accuracy = accuracy_score(X_test_predict, Y_test)
percent_test_accuracy = test_data_accuracy * 100
print("Accuracy for Test data: ", percent_test_accuracy)
def Detection(index):
index = int (index)
X_new = X_test[index]
new_predict = ml_model.predict(X_new)
real_news= "The News is real" if(new_predict[0]==0) else "The News is fake"
return(real_news)
Detection(index)
pip install gradio
import gradio as gr
demo = gr.Interface(fn=Detection, inputs='number', outputs="text")
demo.launch(share=True) |