Spaces:
Paused
Paused
Shreyas094
commited on
Commit
•
d0388f2
1
Parent(s):
e40971e
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,476 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
demo = gr.ChatInterface(
|
2 |
respond,
|
3 |
additional_inputs=[
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import re
|
4 |
+
import gradio as gr
|
5 |
+
import requests
|
6 |
+
from duckduckgo_search import DDGS
|
7 |
+
from typing import List
|
8 |
+
from pydantic import BaseModel, Field
|
9 |
+
from tempfile import NamedTemporaryFile
|
10 |
+
from langchain_community.vectorstores import FAISS
|
11 |
+
from langchain_community.document_loaders import PyPDFLoader
|
12 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
13 |
+
from llama_parse import LlamaParse
|
14 |
+
from langchain_core.documents import Document
|
15 |
+
from huggingface_hub import InferenceClient
|
16 |
+
import inspect
|
17 |
+
import logging
|
18 |
+
|
19 |
+
|
20 |
+
# Set up basic configuration for logging
|
21 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
22 |
+
|
23 |
+
# Environment variables and configurations
|
24 |
+
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
|
25 |
+
llama_cloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY")
|
26 |
+
ACCOUNT_ID = os.environ.get("CLOUDFARE_ACCOUNT_ID")
|
27 |
+
API_TOKEN = os.environ.get("CLOUDFLARE_AUTH_TOKEN")
|
28 |
+
API_BASE_URL = "https://api.cloudflare.com/client/v4/accounts/a17f03e0f049ccae0c15cdcf3b9737ce/ai/run/"
|
29 |
+
|
30 |
+
print(f"ACCOUNT_ID: {ACCOUNT_ID}")
|
31 |
+
print(f"CLOUDFLARE_AUTH_TOKEN: {API_TOKEN[:5]}..." if API_TOKEN else "Not set")
|
32 |
+
|
33 |
+
MODELS = [
|
34 |
+
"mistralai/Mistral-7B-Instruct-v0.3",
|
35 |
+
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
36 |
+
"@cf/meta/llama-3.1-8b-instruct"
|
37 |
+
]
|
38 |
+
|
39 |
+
# Initialize LlamaParse
|
40 |
+
llama_parser = LlamaParse(
|
41 |
+
api_key=llama_cloud_api_key,
|
42 |
+
result_type="markdown",
|
43 |
+
num_workers=4,
|
44 |
+
verbose=True,
|
45 |
+
language="en",
|
46 |
+
)
|
47 |
+
|
48 |
+
def load_document(file: NamedTemporaryFile, parser: str = "llamaparse") -> List[Document]:
|
49 |
+
"""Loads and splits the document into pages."""
|
50 |
+
if parser == "pypdf":
|
51 |
+
loader = PyPDFLoader(file.name)
|
52 |
+
return loader.load_and_split()
|
53 |
+
elif parser == "llamaparse":
|
54 |
+
try:
|
55 |
+
documents = llama_parser.load_data(file.name)
|
56 |
+
return [Document(page_content=doc.text, metadata={"source": file.name}) for doc in documents]
|
57 |
+
except Exception as e:
|
58 |
+
print(f"Error using Llama Parse: {str(e)}")
|
59 |
+
print("Falling back to PyPDF parser")
|
60 |
+
loader = PyPDFLoader(file.name)
|
61 |
+
return loader.load_and_split()
|
62 |
+
else:
|
63 |
+
raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.")
|
64 |
+
|
65 |
+
def get_embeddings():
|
66 |
+
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
67 |
+
|
68 |
+
def update_vectors(files, parser):
|
69 |
+
global uploaded_documents
|
70 |
+
logging.info(f"Entering update_vectors with {len(files)} files and parser: {parser}")
|
71 |
+
|
72 |
+
if not files:
|
73 |
+
logging.warning("No files provided for update_vectors")
|
74 |
+
return "Please upload at least one PDF file.", gr.CheckboxGroup(
|
75 |
+
choices=[doc["name"] for doc in uploaded_documents],
|
76 |
+
value=[doc["name"] for doc in uploaded_documents if doc["selected"]],
|
77 |
+
label="Select documents to query"
|
78 |
+
)
|
79 |
+
|
80 |
+
embed = get_embeddings()
|
81 |
+
total_chunks = 0
|
82 |
+
|
83 |
+
all_data = []
|
84 |
+
for file in files:
|
85 |
+
logging.info(f"Processing file: {file.name}")
|
86 |
+
try:
|
87 |
+
data = load_document(file, parser)
|
88 |
+
logging.info(f"Loaded {len(data)} chunks from {file.name}")
|
89 |
+
all_data.extend(data)
|
90 |
+
total_chunks += len(data)
|
91 |
+
# Append new documents instead of replacing
|
92 |
+
if not any(doc["name"] == file.name for doc in uploaded_documents):
|
93 |
+
uploaded_documents.append({"name": file.name, "selected": True})
|
94 |
+
logging.info(f"Added new document to uploaded_documents: {file.name}")
|
95 |
+
else:
|
96 |
+
logging.info(f"Document already exists in uploaded_documents: {file.name}")
|
97 |
+
except Exception as e:
|
98 |
+
logging.error(f"Error processing file {file.name}: {str(e)}")
|
99 |
+
|
100 |
+
logging.info(f"Total chunks processed: {total_chunks}")
|
101 |
+
|
102 |
+
if os.path.exists("faiss_database"):
|
103 |
+
logging.info("Updating existing FAISS database")
|
104 |
+
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
105 |
+
database.add_documents(all_data)
|
106 |
+
else:
|
107 |
+
logging.info("Creating new FAISS database")
|
108 |
+
database = FAISS.from_documents(all_data, embed)
|
109 |
+
|
110 |
+
database.save_local("faiss_database")
|
111 |
+
logging.info("FAISS database saved")
|
112 |
+
|
113 |
+
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}.", gr.CheckboxGroup(
|
114 |
+
choices=[doc["name"] for doc in uploaded_documents],
|
115 |
+
value=[doc["name"] for doc in uploaded_documents if doc["selected"]],
|
116 |
+
label="Select documents to query"
|
117 |
+
)
|
118 |
+
|
119 |
+
def generate_chunked_response(prompt, model, max_tokens=1000, num_calls=3, temperature=0.2, should_stop=False):
|
120 |
+
print(f"Starting generate_chunked_response with {num_calls} calls")
|
121 |
+
full_response = ""
|
122 |
+
messages = [{"role": "user", "content": prompt}]
|
123 |
+
|
124 |
+
if model == "@cf/meta/llama-3.1-8b-instruct":
|
125 |
+
# Cloudflare API
|
126 |
+
for i in range(num_calls):
|
127 |
+
print(f"Starting Cloudflare API call {i+1}")
|
128 |
+
if should_stop:
|
129 |
+
print("Stop clicked, breaking loop")
|
130 |
+
break
|
131 |
+
try:
|
132 |
+
response = requests.post(
|
133 |
+
f"https://api.cloudflare.com/client/v4/accounts/{ACCOUNT_ID}/ai/run/@cf/meta/llama-3.1-8b-instruct",
|
134 |
+
headers={"Authorization": f"Bearer {API_TOKEN}"},
|
135 |
+
json={
|
136 |
+
"stream": true,
|
137 |
+
"messages": [
|
138 |
+
{"role": "system", "content": "You are a friendly assistant"},
|
139 |
+
{"role": "user", "content": prompt}
|
140 |
+
],
|
141 |
+
"max_tokens": max_tokens,
|
142 |
+
"temperature": temperature
|
143 |
+
},
|
144 |
+
stream=true
|
145 |
+
)
|
146 |
+
|
147 |
+
for line in response.iter_lines():
|
148 |
+
if should_stop:
|
149 |
+
print("Stop clicked during streaming, breaking")
|
150 |
+
break
|
151 |
+
if line:
|
152 |
+
try:
|
153 |
+
json_data = json.loads(line.decode('utf-8').split('data: ')[1])
|
154 |
+
chunk = json_data['response']
|
155 |
+
full_response += chunk
|
156 |
+
except json.JSONDecodeError:
|
157 |
+
continue
|
158 |
+
print(f"Cloudflare API call {i+1} completed")
|
159 |
+
except Exception as e:
|
160 |
+
print(f"Error in generating response from Cloudflare: {str(e)}")
|
161 |
+
else:
|
162 |
+
# Original Hugging Face API logic
|
163 |
+
client = InferenceClient(model, token=huggingface_token)
|
164 |
+
|
165 |
+
for i in range(num_calls):
|
166 |
+
print(f"Starting Hugging Face API call {i+1}")
|
167 |
+
if should_stop:
|
168 |
+
print("Stop clicked, breaking loop")
|
169 |
+
break
|
170 |
+
try:
|
171 |
+
for message in client.chat_completion(
|
172 |
+
messages=messages,
|
173 |
+
max_tokens=max_tokens,
|
174 |
+
temperature=temperature,
|
175 |
+
stream=True,
|
176 |
+
):
|
177 |
+
if should_stop:
|
178 |
+
print("Stop clicked during streaming, breaking")
|
179 |
+
break
|
180 |
+
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
181 |
+
chunk = message.choices[0].delta.content
|
182 |
+
full_response += chunk
|
183 |
+
print(f"Hugging Face API call {i+1} completed")
|
184 |
+
except Exception as e:
|
185 |
+
print(f"Error in generating response from Hugging Face: {str(e)}")
|
186 |
+
|
187 |
+
# Clean up the response
|
188 |
+
clean_response = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', full_response, flags=re.DOTALL)
|
189 |
+
clean_response = clean_response.replace("Using the following context:", "").strip()
|
190 |
+
clean_response = clean_response.replace("Using the following context from the PDF documents:", "").strip()
|
191 |
+
|
192 |
+
# Remove duplicate paragraphs and sentences
|
193 |
+
paragraphs = clean_response.split('\n\n')
|
194 |
+
unique_paragraphs = []
|
195 |
+
for paragraph in paragraphs:
|
196 |
+
if paragraph not in unique_paragraphs:
|
197 |
+
sentences = paragraph.split('. ')
|
198 |
+
unique_sentences = []
|
199 |
+
for sentence in sentences:
|
200 |
+
if sentence not in unique_sentences:
|
201 |
+
unique_sentences.append(sentence)
|
202 |
+
unique_paragraphs.append('. '.join(unique_sentences))
|
203 |
+
|
204 |
+
final_response = '\n\n'.join(unique_paragraphs)
|
205 |
+
|
206 |
+
print(f"Final clean response: {final_response[:100]}...")
|
207 |
+
return final_response
|
208 |
+
|
209 |
+
def duckduckgo_search(query):
|
210 |
+
with DDGS() as ddgs:
|
211 |
+
results = ddgs.text(query, max_results=5)
|
212 |
+
return results
|
213 |
+
|
214 |
+
class CitingSources(BaseModel):
|
215 |
+
sources: List[str] = Field(
|
216 |
+
...,
|
217 |
+
description="List of sources to cite. Should be an URL of the source."
|
218 |
+
)
|
219 |
+
def chatbot_interface(message, history, use_web_search, model, temperature, num_calls):
|
220 |
+
if not message.strip():
|
221 |
+
return "", history
|
222 |
+
|
223 |
+
history = history + [(message, "")]
|
224 |
+
|
225 |
+
try:
|
226 |
+
for response in respond(message, history, model, temperature, num_calls, use_web_search):
|
227 |
+
history[-1] = (message, response)
|
228 |
+
yield history
|
229 |
+
except gr.CancelledError:
|
230 |
+
yield history
|
231 |
+
except Exception as e:
|
232 |
+
logging.error(f"Unexpected error in chatbot_interface: {str(e)}")
|
233 |
+
history[-1] = (message, f"An unexpected error occurred: {str(e)}")
|
234 |
+
yield history
|
235 |
+
|
236 |
+
def retry_last_response(history, use_web_search, model, temperature, num_calls):
|
237 |
+
if not history:
|
238 |
+
return history
|
239 |
+
|
240 |
+
last_user_msg = history[-1][0]
|
241 |
+
history = history[:-1] # Remove the last response
|
242 |
+
|
243 |
+
return chatbot_interface(last_user_msg, history, use_web_search, model, temperature, num_calls)
|
244 |
+
|
245 |
+
def respond(message, history, model, temperature, num_calls, use_web_search, selected_docs):
|
246 |
+
logging.info(f"User Query: {message}")
|
247 |
+
logging.info(f"Model Used: {model}")
|
248 |
+
logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}")
|
249 |
+
|
250 |
+
logging.info(f"Selected Documents: {selected_docs}")
|
251 |
+
|
252 |
+
try:
|
253 |
+
if use_web_search:
|
254 |
+
for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature):
|
255 |
+
response = f"{main_content}\n\n{sources}"
|
256 |
+
first_line = response.split('\n')[0] if response else ''
|
257 |
+
logging.info(f"Generated Response (first line): {first_line}")
|
258 |
+
yield response
|
259 |
+
else:
|
260 |
+
embed = get_embeddings()
|
261 |
+
if os.path.exists("faiss_database"):
|
262 |
+
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
263 |
+
retriever = database.as_retriever()
|
264 |
+
|
265 |
+
# Filter relevant documents based on user selection
|
266 |
+
all_relevant_docs = retriever.get_relevant_documents(message)
|
267 |
+
relevant_docs = [doc for doc in all_relevant_docs if doc.metadata["source"] in selected_docs]
|
268 |
+
|
269 |
+
if not relevant_docs:
|
270 |
+
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
|
271 |
+
return
|
272 |
+
|
273 |
+
context_str = "\n".join([doc.page_content for doc in relevant_docs])
|
274 |
+
else:
|
275 |
+
context_str = "No documents available."
|
276 |
+
yield "No documents available. Please upload PDF documents to answer questions."
|
277 |
+
return
|
278 |
+
|
279 |
+
if model == "@cf/meta/llama-3.1-8b-instruct":
|
280 |
+
# Use Cloudflare API
|
281 |
+
for partial_response in get_response_from_cloudflare(prompt="", context=context_str, query=message, num_calls=num_calls, temperature=temperature, search_type="pdf"):
|
282 |
+
first_line = partial_response.split('\n')[0] if partial_response else ''
|
283 |
+
logging.info(f"Generated Response (first line): {first_line}")
|
284 |
+
yield partial_response
|
285 |
+
else:
|
286 |
+
# Use Hugging Face API
|
287 |
+
for partial_response in get_response_from_pdf(message, model, selected_docs, num_calls=num_calls, temperature=temperature):
|
288 |
+
first_line = partial_response.split('\n')[0] if partial_response else ''
|
289 |
+
logging.info(f"Generated Response (first line): {first_line}")
|
290 |
+
yield partial_response
|
291 |
+
except Exception as e:
|
292 |
+
logging.error(f"Error with {model}: {str(e)}")
|
293 |
+
if "microsoft/Phi-3-mini-4k-instruct" in model:
|
294 |
+
logging.info("Falling back to Mistral model due to Phi-3 error")
|
295 |
+
fallback_model = "mistralai/Mistral-7B-Instruct-v0.3"
|
296 |
+
yield from respond(message, history, fallback_model, temperature, num_calls, use_web_search, selected_docs)
|
297 |
+
else:
|
298 |
+
yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model."
|
299 |
+
|
300 |
+
logging.basicConfig(level=logging.DEBUG)
|
301 |
+
|
302 |
+
def get_response_from_cloudflare(prompt, context, query, num_calls=3, temperature=0.2, search_type="pdf"):
|
303 |
+
headers = {
|
304 |
+
"Authorization": f"Bearer {API_TOKEN}",
|
305 |
+
"Content-Type": "application/json"
|
306 |
+
}
|
307 |
+
model = "@cf/meta/llama-3.1-8b-instruct"
|
308 |
+
|
309 |
+
if search_type == "pdf":
|
310 |
+
instruction = f"""Using the following context from the PDF documents:
|
311 |
+
{context}
|
312 |
+
Write a detailed and complete response that answers the following user question: '{query}'"""
|
313 |
+
else: # web search
|
314 |
+
instruction = f"""Using the following context:
|
315 |
+
{context}
|
316 |
+
Write a detailed and complete research document that fulfills the following user request: '{query}'
|
317 |
+
After writing the document, please provide a list of sources used in your response."""
|
318 |
+
|
319 |
+
inputs = [
|
320 |
+
{"role": "system", "content": instruction},
|
321 |
+
{"role": "user", "content": query}
|
322 |
+
]
|
323 |
+
|
324 |
+
payload = {
|
325 |
+
"messages": inputs,
|
326 |
+
"stream": True,
|
327 |
+
"temperature": temperature
|
328 |
+
}
|
329 |
+
|
330 |
+
full_response = ""
|
331 |
+
for i in range(num_calls):
|
332 |
+
try:
|
333 |
+
with requests.post(f"{API_BASE_URL}{model}", headers=headers, json=payload, stream=True) as response:
|
334 |
+
if response.status_code == 200:
|
335 |
+
for line in response.iter_lines():
|
336 |
+
if line:
|
337 |
+
try:
|
338 |
+
json_response = json.loads(line.decode('utf-8').split('data: ')[1])
|
339 |
+
if 'response' in json_response:
|
340 |
+
chunk = json_response['response']
|
341 |
+
full_response += chunk
|
342 |
+
yield full_response
|
343 |
+
except (json.JSONDecodeError, IndexError) as e:
|
344 |
+
logging.error(f"Error parsing streaming response: {str(e)}")
|
345 |
+
continue
|
346 |
+
else:
|
347 |
+
logging.error(f"HTTP Error: {response.status_code}, Response: {response.text}")
|
348 |
+
yield f"I apologize, but I encountered an HTTP error: {response.status_code}. Please try again later."
|
349 |
+
except Exception as e:
|
350 |
+
logging.error(f"Error in generating response from Cloudflare: {str(e)}")
|
351 |
+
yield f"I apologize, but an error occurred: {str(e)}. Please try again later."
|
352 |
+
|
353 |
+
if not full_response:
|
354 |
+
yield "I apologize, but I couldn't generate a response at this time. Please try again later."
|
355 |
+
|
356 |
+
def get_response_with_search(query, model, num_calls=3, temperature=0.2):
|
357 |
+
search_results = duckduckgo_search(query)
|
358 |
+
context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n"
|
359 |
+
for result in search_results if 'body' in result)
|
360 |
+
|
361 |
+
prompt = f"""Using the following context:
|
362 |
+
{context}
|
363 |
+
Write a detailed and complete research document that fulfills the following user request: '{query}'
|
364 |
+
After writing the document, please provide a list of sources used in your response."""
|
365 |
+
|
366 |
+
if model == "@cf/meta/llama-3.1-8b-instruct":
|
367 |
+
# Use Cloudflare API
|
368 |
+
for response in get_response_from_cloudflare(prompt="", context=context, query=query, num_calls=num_calls, temperature=temperature, search_type="web"):
|
369 |
+
yield response, "" # Yield streaming response without sources
|
370 |
+
else:
|
371 |
+
# Use Hugging Face API
|
372 |
+
client = InferenceClient(model, token=huggingface_token)
|
373 |
+
|
374 |
+
main_content = ""
|
375 |
+
for i in range(num_calls):
|
376 |
+
for message in client.chat_completion(
|
377 |
+
messages=[{"role": "user", "content": prompt}],
|
378 |
+
max_tokens=1000,
|
379 |
+
temperature=temperature,
|
380 |
+
stream=True,
|
381 |
+
):
|
382 |
+
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
383 |
+
chunk = message.choices[0].delta.content
|
384 |
+
main_content += chunk
|
385 |
+
yield main_content, "" # Yield partial main content without sources
|
386 |
+
|
387 |
+
def get_response_from_pdf(query, model, selected_docs, num_calls=3, temperature=0.2):
|
388 |
+
logging.info(f"Entering get_response_from_pdf with query: {query}, model: {model}, selected_docs: {selected_docs}")
|
389 |
+
|
390 |
+
embed = get_embeddings()
|
391 |
+
if os.path.exists("faiss_database"):
|
392 |
+
logging.info("Loading FAISS database")
|
393 |
+
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
394 |
+
else:
|
395 |
+
logging.warning("No FAISS database found")
|
396 |
+
yield "No documents available. Please upload PDF documents to answer questions."
|
397 |
+
return
|
398 |
+
|
399 |
+
retriever = database.as_retriever()
|
400 |
+
logging.info(f"Retrieving relevant documents for query: {query}")
|
401 |
+
relevant_docs = retriever.get_relevant_documents(query)
|
402 |
+
logging.info(f"Number of relevant documents retrieved: {len(relevant_docs)}")
|
403 |
+
|
404 |
+
# Filter relevant_docs based on selected documents
|
405 |
+
filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs]
|
406 |
+
logging.info(f"Number of filtered documents: {len(filtered_docs)}")
|
407 |
+
|
408 |
+
if not filtered_docs:
|
409 |
+
logging.warning(f"No relevant information found in the selected documents: {selected_docs}")
|
410 |
+
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
|
411 |
+
return
|
412 |
+
|
413 |
+
for doc in filtered_docs:
|
414 |
+
logging.info(f"Document source: {doc.metadata['source']}")
|
415 |
+
logging.info(f"Document content preview: {doc.page_content[:100]}...") # Log first 100 characters of each document
|
416 |
+
|
417 |
+
context_str = "\n".join([doc.page_content for doc in filtered_docs])
|
418 |
+
logging.info(f"Total context length: {len(context_str)}")
|
419 |
+
|
420 |
+
if model == "@cf/meta/llama-3.1-8b-instruct":
|
421 |
+
logging.info("Using Cloudflare API")
|
422 |
+
# Use Cloudflare API with the retrieved context
|
423 |
+
for response in get_response_from_cloudflare(prompt="", context=context_str, query=query, num_calls=num_calls, temperature=temperature, search_type="pdf"):
|
424 |
+
yield response
|
425 |
+
else:
|
426 |
+
logging.info("Using Hugging Face API")
|
427 |
+
# Use Hugging Face API
|
428 |
+
prompt = f"""Using the following context from the PDF documents:
|
429 |
+
{context_str}
|
430 |
+
Write a detailed and complete response that answers the following user question: '{query}'"""
|
431 |
+
|
432 |
+
client = InferenceClient(model, token=huggingface_token)
|
433 |
+
|
434 |
+
response = ""
|
435 |
+
for i in range(num_calls):
|
436 |
+
logging.info(f"API call {i+1}/{num_calls}")
|
437 |
+
for message in client.chat_completion(
|
438 |
+
messages=[{"role": "user", "content": prompt}],
|
439 |
+
max_tokens=1000,
|
440 |
+
temperature=temperature,
|
441 |
+
stream=True,
|
442 |
+
):
|
443 |
+
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
444 |
+
chunk = message.choices[0].delta.content
|
445 |
+
response += chunk
|
446 |
+
yield response # Yield partial response
|
447 |
+
|
448 |
+
logging.info("Finished generating response")
|
449 |
+
|
450 |
+
def vote(data: gr.LikeData):
|
451 |
+
if data.liked:
|
452 |
+
print(f"You upvoted this response: {data.value}")
|
453 |
+
else:
|
454 |
+
print(f"You downvoted this response: {data.value}")
|
455 |
+
|
456 |
+
css = """
|
457 |
+
/* Add your custom CSS here */
|
458 |
+
"""
|
459 |
+
|
460 |
+
uploaded_documents = []
|
461 |
+
|
462 |
+
def display_documents():
|
463 |
+
return gr.CheckboxGroup(
|
464 |
+
choices=[doc["name"] for doc in uploaded_documents],
|
465 |
+
value=[doc["name"] for doc in uploaded_documents if doc["selected"]],
|
466 |
+
label="Select documents to query"
|
467 |
+
)
|
468 |
+
|
469 |
+
# Define the checkbox outside the demo block
|
470 |
+
document_selector = gr.CheckboxGroup(label="Select documents to query")
|
471 |
+
|
472 |
+
use_web_search = gr.Checkbox(label="Use Web Search", value=False)
|
473 |
+
|
474 |
demo = gr.ChatInterface(
|
475 |
respond,
|
476 |
additional_inputs=[
|