InvestmentCopilot / NewsAnalyzer.py
shreyashnadage
Added:
560ffaf
raw
history blame
1.01 kB
from pygooglenews import GoogleNews
from transformers import BertTokenizer, BertForSequenceClassification
from transformers import pipeline
import pandas as pd
finbert = BertForSequenceClassification.from_pretrained('yiyanghkust/finbert-tone',num_labels=3)
tokenizer = BertTokenizer.from_pretrained('yiyanghkust/finbert-tone')
nlp = pipeline("sentiment-analysis", model=finbert, tokenizer=tokenizer)
num_top_headlines = 10
gn = GoogleNews(lang='en',country='IN')
def get_headlines(searchterm='Nifty'):
test = gn.search(searchterm, when='5d')
newslist = [i['title'] for i in test['entries']]
return newslist[:num_top_headlines]
def get_sentimental_analysis(newslist):
results = nlp(newslist)
df = pd.DataFrame({'headlines': newslist, \
'results': [i['label'] for i in results]})
return df.results.value_counts().sort_values(ascending=False).index[0]
def get_nifty_sentiment():
newslist = get_headlines()
return get_sentimental_analysis(newslist)