import talib as ta import pandas as pd import numpy as np def GetPatternForData(stock_data_df): candle_name_list = ta.get_function_groups()['Pattern Recognition'] tech_analysis_df = stock_data_df.iloc[-10:].copy() op_df = tech_analysis_df.Open hi_df = tech_analysis_df.High lo_df = tech_analysis_df.Low cl_df = tech_analysis_df.Close for candle in candle_name_list: tech_analysis_df[candle] = getattr(ta, candle)(op_df, hi_df, lo_df, cl_df) result = pd.DataFrame(tech_analysis_df[['Date']+candle_name_list].sum(), columns=['Count']) filtered_results = result[result.Count != 0] if filtered_results.empty: return None, tech_analysis_df else: return filtered_results[filtered_results.Count == filtered_results.Count.max()].index[0], tech_analysis_df return None, tech_analysis_df def ComputeChaikinADSignal(stock_data_df): ADOSC_data = stock_data_df.copy() ADOSC_data['ADOSC'] = ta.ADOSC(ADOSC_data.High, ADOSC_data.Low, ADOSC_data.Close, ADOSC_data.Volume, fastperiod=3, slowperiod=10) ADOSC_data.dropna(inplace=True) ADOSC_data['ADOSC_chg'] = np.log(ADOSC_data['ADOSC']/ADOSC_data['ADOSC'].shift(1)) ADOSC_data.dropna(inplace=True) return ADOSC_data def ComputeMACDSignal(stock_data_df): macd_data_df = stock_data_df.copy() macd_data_df['macd'], macd_data_df['macdsignal'], macd_data_df['macdhist'] =\ ta.MACD(macd_data_df.Close, fastperiod=12, slowperiod=26, signalperiod=9) macd_data_df.dropna(inplace=True) return macd_data_df