File size: 1,458 Bytes
c05148c
 
 
 
 
 
 
3111947
 
 
 
dcbf5e3
3111947
 
dcbf5e3
3111947
dcbf5e3
 
 
 
3111947
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
---
title: Composable-Diffusion
sdk: gradio
sdk_version: 3.12.0
app_file: app.py
pinned: true
---

# Composable Diffusion
**Compositional Visual Generation with Composable Diffusion Models (ECCV 2022)**

**[Webpage](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/) | [GitHub](https://github.com/energy-based-model/Compositional-Visual-Generation-with-Composable-Diffusion-Models-PyTorch)**

## Overview
We propose to use **conjunction and negation** (negative prompts) operators for **compositional generation with conditional diffusion models in test time without any training**. 

For more details, please refer to our paper: 

[Compositional Visual Generation with Composable Diffusion Models](https://arxiv.org/abs/2206.01714).<br>
[Nan Liu](https://nanliu.io)*\, [Shuang Li](https://people.csail.mit.edu/lishuang)*\, [Yilun Du](https://yilundu.github.io)*\, [Antonio Torralba](https://groups.csail.mit.edu/vision/torralbalab/), [Joshua B. Tenenbaum](https://mitibmwatsonailab.mit.edu/people/joshua-tenenbaum/), **ECCV 2022**

## Citation

If you find our paper useful in your research, please cite the following paper:

``` latex
@article{liu2022compositional,
  title={Compositional Visual Generation with Composable Diffusion Models},
  author={Liu, Nan and Li, Shuang and Du, Yilun and Torralba, Antonio and Tenenbaum, Joshua B},
  journal={arXiv preprint arXiv:2206.01714},
  year={2022}
}
```