Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
import torch.nn as nn | |
from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel | |
from diffusers.utils import logging | |
logger = logging.get_logger(__name__) | |
def cosine_distance(image_embeds, text_embeds): | |
normalized_image_embeds = nn.functional.normalize(image_embeds) | |
normalized_text_embeds = nn.functional.normalize(text_embeds) | |
return torch.mm(normalized_image_embeds, normalized_text_embeds.T) | |
class StableDiffusionSafetyChecker(PreTrainedModel): | |
config_class = CLIPConfig | |
def __init__(self, config: CLIPConfig): | |
super().__init__(config) | |
self.vision_model = CLIPVisionModel(config.vision_config) | |
self.visual_projection = nn.Linear(config.vision_config.hidden_size, config.projection_dim, bias=False) | |
self.concept_embeds = nn.Parameter(torch.ones(17, config.projection_dim), requires_grad=False) | |
self.special_care_embeds = nn.Parameter(torch.ones(3, config.projection_dim), requires_grad=False) | |
self.register_buffer("concept_embeds_weights", torch.ones(17)) | |
self.register_buffer("special_care_embeds_weights", torch.ones(3)) | |
def forward(self, clip_input, images): | |
pooled_output = self.vision_model(clip_input)[1] # pooled_output | |
image_embeds = self.visual_projection(pooled_output) | |
special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds).cpu().numpy() | |
cos_dist = cosine_distance(image_embeds, self.concept_embeds).cpu().numpy() | |
result = [] | |
batch_size = image_embeds.shape[0] | |
for i in range(batch_size): | |
result_img = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []} | |
# increase this value to create a stronger `nfsw` filter | |
# at the cost of increasing the possibility of filtering benign images | |
adjustment = 0.0 | |
for concet_idx in range(len(special_cos_dist[0])): | |
concept_cos = special_cos_dist[i][concet_idx] | |
concept_threshold = self.special_care_embeds_weights[concet_idx].item() | |
result_img["special_scores"][concet_idx] = round(concept_cos - concept_threshold + adjustment, 3) | |
if result_img["special_scores"][concet_idx] > 0: | |
result_img["special_care"].append({concet_idx, result_img["special_scores"][concet_idx]}) | |
adjustment = 0.01 | |
for concet_idx in range(len(cos_dist[0])): | |
concept_cos = cos_dist[i][concet_idx] | |
concept_threshold = self.concept_embeds_weights[concet_idx].item() | |
result_img["concept_scores"][concet_idx] = round(concept_cos - concept_threshold + adjustment, 3) | |
if result_img["concept_scores"][concet_idx] > 0: | |
result_img["bad_concepts"].append(concet_idx) | |
result.append(result_img) | |
has_nsfw_concepts = [len(res["bad_concepts"]) > 0 for res in result] | |
for idx, has_nsfw_concept in enumerate(has_nsfw_concepts): | |
if has_nsfw_concept: | |
images[idx] = np.zeros(images[idx].shape) # black image | |
if any(has_nsfw_concepts): | |
logger.warning( | |
"Potential NSFW content was detected in one or more images. A black image will be returned instead." | |
" Try again with a different prompt and/or seed." | |
) | |
return images, has_nsfw_concepts | |