Shuang59's picture
Update app.py
f07d91a
raw
history blame
7.96 kB
# -*- coding: utf-8 -*-
"""Copy of compose_glide.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/19xx6Nu4FeiGj-TzTUFxBf-15IkeuFx_F
"""
import streamlit as st
import gradio as gr
import torch as th
from composable_diffusion.download import download_model
from composable_diffusion.model_creation import create_model_and_diffusion as create_model_and_diffusion_for_clevr
from composable_diffusion.model_creation import model_and_diffusion_defaults as model_and_diffusion_defaults_for_clevr
from composable_diffusion.composable_stable_diffusion.pipeline_composable_stable_diffusion import ComposableStableDiffusionPipeline
# This notebook supports both CPU and GPU.
# On CPU, generating one sample may take on the order of 20 minutes.
# On a GPU, it should be under a minute.
has_cuda = th.cuda.is_available()
device = th.device('cpu' if not th.cuda.is_available() else 'cuda')
# init stable diffusion model
pipe = ComposableStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
).to(device)
pipe.safety_checker = None
# create model for CLEVR Objects
clevr_options = model_and_diffusion_defaults_for_clevr()
flags = {
"image_size": 128,
"num_channels": 192,
"num_res_blocks": 2,
"learn_sigma": True,
"use_scale_shift_norm": False,
"raw_unet": True,
"noise_schedule": "squaredcos_cap_v2",
"rescale_learned_sigmas": False,
"rescale_timesteps": False,
"num_classes": '2',
"dataset": "clevr_pos",
"use_fp16": has_cuda,
"timestep_respacing": '100'
}
for key, val in flags.items():
clevr_options[key] = val
clevr_model, clevr_diffusion = create_model_and_diffusion_for_clevr(**clevr_options)
clevr_model.eval()
if has_cuda:
clevr_model.convert_to_fp16()
clevr_model.to(device)
clevr_model.load_state_dict(th.load(download_model('clevr_pos'), device))
print('total clevr_pos parameters', sum(x.numel() for x in clevr_model.parameters()))
def compose_clevr_objects(prompt, weights, steps):
weights = [float(x.strip()) for x in weights.split('|')]
weights = th.tensor(weights, device=device).reshape(-1, 1, 1, 1)
coordinates = [
[
float(x.split(',')[0].strip()), float(x.split(',')[1].strip())]
for x in prompt.split('|')
]
coordinates += [[-1, -1]] # add unconditional score label
batch_size = 1
clevr_options['timestep_respacing'] = str(int(steps))
_, clevr_diffusion = create_model_and_diffusion_for_clevr(**clevr_options)
def model_fn(x_t, ts, **kwargs):
half = x_t[:1]
combined = th.cat([half] * kwargs['y'].size(0), dim=0)
model_out = clevr_model(combined, ts, **kwargs)
eps, rest = model_out[:, :3], model_out[:, 3:]
masks = kwargs.get('masks')
cond_eps = eps[masks]
uncond_eps = eps[~masks]
half_eps = uncond_eps + (weights * (cond_eps - uncond_eps)).sum(dim=0, keepdims=True)
eps = th.cat([half_eps] * x_t.size(0), dim=0)
return th.cat([eps, rest], dim=1)
def sample(coordinates):
masks = [True] * (len(coordinates) - 1) + [False]
model_kwargs = dict(
y=th.tensor(coordinates, dtype=th.float, device=device),
masks=th.tensor(masks, dtype=th.bool, device=device)
)
samples = clevr_diffusion.p_sample_loop(
model_fn,
(len(coordinates), 3, clevr_options["image_size"], clevr_options["image_size"]),
device=device,
clip_denoised=True,
progress=True,
model_kwargs=model_kwargs,
cond_fn=None,
)[:batch_size]
return samples
samples = sample(coordinates)
out_img = samples[0].permute(1, 2, 0)
out_img = (out_img + 1) / 2
out_img = (out_img.detach().cpu() * 255.).to(th.uint8)
out_img = out_img.numpy()
return out_img
def stable_diffusion_compose(prompt, steps, weights, seed):
generator = th.Generator("cuda").manual_seed(int(seed))
image = pipe(prompt, guidance_scale=7.5, num_inference_steps=steps,
weights=weights, generator=generator).images[0]
image.save(f'{"_".join(prompt.split())}.png')
return image
def compose(prompt, weights, version, steps, seed):
try:
with th.no_grad():
if version == 'Stable_Diffusion_1v_4':
res = stable_diffusion_compose(prompt, steps, weights, seed)
return res
else:
return compose_clevr_objects(prompt, weights, steps)
except Exception as e:
print(e)
return None
examples_1 = "A castle in a forest | grainy, fog"
examples_3 = '0.1, 0.5 | 0.3, 0.5 | 0.5, 0.5 | 0.7, 0.5 | 0.9, 0.5'
examples_5 = 'a white church | lightning in the background'
examples_6 = 'mystical trees | A dark magical pond | dark'
examples_7 = 'A lake | A mountain | Cherry Blossoms next to the lake'
examples = [
[examples_6, "7.5 | 7.5 | -7.5", 'Stable_Diffusion_1v_4', 50, 8],
[examples_6, "7.5 | 7.5 | 7.5", 'Stable_Diffusion_1v_4', 50, 8],
[examples_1, "7.5 | -7.5", 'Stable_Diffusion_1v_4', 50, 0],
[examples_7, "7.5 | 7.5 | 7.5", 'Stable_Diffusion_1v_4', 50, 3],
[examples_5, "7.5 | 7.5", 'Stable_Diffusion_1v_4', 50, 0],
[examples_3, "7.5 | 7.5 | 7.5 | 7.5 | 7.5", 'CLEVR Objects', 100, 0]
]
title = 'Compositional Visual Generation with Composable Diffusion Models'
description = '<p>Our conjunction and negation (a.k.a. negative prompts) operators are also added into stable diffusion webui! (<a href="https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Negative-prompt">Negation</a> and <a href="https://github.com/AUTOMATIC1111/stable-diffusion-webui/commit/c26732fbee2a57e621ac22bf70decf7496daa4cd">Conjunction</a>)</p></p><p>See more information from our <a href="https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/">Project Page</a>.</p><ul><li>One version is based on the released <a href="https://github.com/openai/glide-text2im">GLIDE</a> and <a href="https://github.com/CompVis/stable-diffusion/">Stable Diffusion</a> for composing natural language description.</li><li>Another is based on our pre-trained CLEVR Object Model for composing objects. <br>(<b>Note</b>: We recommend using <b><i>x</i></b> in range <b><i>[0.1, 0.9]</i></b> and <b><i>y</i></b> in range <b><i>[0.25, 0.7]</i></b>, since the training dataset labels are in given ranges.)</li></ul><p>When composing multiple sentences, use `|` as the delimiter, see given examples below.</p><p>You can also specify the weight of each text by using `|` as the delimiter. When the weight is negative, it will use Negation Operator (NOT), which indicates the corresponding prompt is a negative prompt. Otherwise it will use Conjunction operator (AND).</p><p><b>Only Conjunction operator is enabled for CLEVR Object.</b></p><p><b>Note: When using Stable Diffusion, black images will be returned if the given prompt is detected as problematic. For composing GLIDE model, we recommend using the Colab demo in our <a href="https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/">Project Page</a>.</b></p>'
iface = gr.Interface(compose,
inputs=[
gr.Textbox(label='prompt', value='mystical trees | A dark magical pond | dark'),
gr.Textbox(label='weights', value='7.5 | 7.5 | -7.5'),
gr.Radio(['Stable_Diffusion_1v_4', 'CLEVR Objects'], type="value", label='version', value='Stable_Diffusion_1v_4'),
gr.Slider(10, 200, value=50),
gr.Number(8)
],
outputs='image', cache_examples=False,
title=title, description=description, examples=examples)
iface.launch()